YES
Confluence Proof
Confluence Proof
by csi
Input
The rewrite relation of the following TRS is considered.
a(b(x)) |
→ |
C(x) |
b(c(x)) |
→ |
A(x) |
c(a(x)) |
→ |
B(x) |
A(C(x)) |
→ |
b(x) |
C(B(x)) |
→ |
a(x) |
B(A(x)) |
→ |
c(x) |
a(a(a(a(x)))) |
→ |
A(A(A(x))) |
A(A(A(A(x)))) |
→ |
a(a(a(x))) |
b(b(b(b(x)))) |
→ |
B(B(B(x))) |
B(B(B(B(x)))) |
→ |
b(b(b(x))) |
c(c(c(c(x)))) |
→ |
C(C(C(x))) |
C(C(C(C(x)))) |
→ |
c(c(c(x))) |
B(a(a(a(x)))) |
→ |
c(A(A(A(x)))) |
A(A(A(b(x)))) |
→ |
a(a(a(C(x)))) |
C(b(b(b(x)))) |
→ |
a(B(B(B(x)))) |
B(B(B(c(x)))) |
→ |
b(b(b(A(x)))) |
A(c(c(c(x)))) |
→ |
b(C(C(C(x)))) |
C(C(C(a(x)))) |
→ |
c(c(c(B(x)))) |
a(A(x)) |
→ |
x |
A(a(x)) |
→ |
x |
b(B(x)) |
→ |
x |
B(b(x)) |
→ |
x |
c(C(x)) |
→ |
x |
C(c(x)) |
→ |
x |
Proof
1 Redundant Rules Transformation
To prove that the TRS is (non-)confluent, we show (non-)confluence of the following
modified system:
C(c(x)) |
→ |
x |
c(C(x)) |
→ |
x |
B(b(x)) |
→ |
x |
b(B(x)) |
→ |
x |
A(a(x)) |
→ |
x |
a(A(x)) |
→ |
x |
C(C(C(a(x)))) |
→ |
c(c(c(B(x)))) |
A(c(c(c(x)))) |
→ |
b(C(C(C(x)))) |
B(B(B(c(x)))) |
→ |
b(b(b(A(x)))) |
C(b(b(b(x)))) |
→ |
a(B(B(B(x)))) |
A(A(A(b(x)))) |
→ |
a(a(a(C(x)))) |
B(a(a(a(x)))) |
→ |
c(A(A(A(x)))) |
C(C(C(C(x)))) |
→ |
c(c(c(x))) |
c(c(c(c(x)))) |
→ |
C(C(C(x))) |
B(B(B(B(x)))) |
→ |
b(b(b(x))) |
b(b(b(b(x)))) |
→ |
B(B(B(x))) |
A(A(A(A(x)))) |
→ |
a(a(a(x))) |
a(a(a(a(x)))) |
→ |
A(A(A(x))) |
B(A(x)) |
→ |
c(x) |
C(B(x)) |
→ |
a(x) |
A(C(x)) |
→ |
b(x) |
c(a(x)) |
→ |
B(x) |
b(c(x)) |
→ |
A(x) |
a(b(x)) |
→ |
C(x) |
All redundant rules that were added or removed can be
simulated in 2 steps
.
1.1 Locally confluent and terminating
Confluence is proven by showing local confluence and termination.
1.1.1 String Reversal
Since only unary symbols occur, one can reverse all terms and obtains the TRS
c(C(x)) |
→ |
x |
C(c(x)) |
→ |
x |
b(B(x)) |
→ |
x |
B(b(x)) |
→ |
x |
a(A(x)) |
→ |
x |
A(a(x)) |
→ |
x |
a(C(C(C(x)))) |
→ |
B(c(c(c(x)))) |
c(c(c(A(x)))) |
→ |
C(C(C(b(x)))) |
c(B(B(B(x)))) |
→ |
A(b(b(b(x)))) |
b(b(b(C(x)))) |
→ |
B(B(B(a(x)))) |
b(A(A(A(x)))) |
→ |
C(a(a(a(x)))) |
a(a(a(B(x)))) |
→ |
A(A(A(c(x)))) |
C(C(C(C(x)))) |
→ |
c(c(c(x))) |
c(c(c(c(x)))) |
→ |
C(C(C(x))) |
B(B(B(B(x)))) |
→ |
b(b(b(x))) |
b(b(b(b(x)))) |
→ |
B(B(B(x))) |
A(A(A(A(x)))) |
→ |
a(a(a(x))) |
a(a(a(a(x)))) |
→ |
A(A(A(x))) |
A(B(x)) |
→ |
c(x) |
B(C(x)) |
→ |
a(x) |
C(A(x)) |
→ |
b(x) |
a(c(x)) |
→ |
B(x) |
c(b(x)) |
→ |
A(x) |
b(a(x)) |
→ |
C(x) |
1.1.1.1 Rule Removal
Using the
Knuth Bendix order with w0 = 1 and the following precedence and weight functions
prec(B) |
= |
4 |
|
weight(B) |
= |
1 |
|
|
|
prec(A) |
= |
2 |
|
weight(A) |
= |
1 |
|
|
|
prec(c) |
= |
3 |
|
weight(c) |
= |
1 |
|
|
|
prec(C) |
= |
0 |
|
weight(C) |
= |
1 |
|
|
|
prec(a) |
= |
7 |
|
weight(a) |
= |
1 |
|
|
|
prec(b) |
= |
6 |
|
weight(b) |
= |
1 |
|
|
|
all rules could be removed.
1.1.1.1.1 R is empty
There are no rules in the TRS. Hence, it is terminating.
1.1.2 Local Confluence Proof
All critical pairs are joinable which can be seen by computing normal forms of all critical pairs.
Tool configuration
csi
- version: csi 1.2.5 [hg: unknown]
- strategy:
(sorted -ms*; ( ((cr -kb;((( matrix -dim 1 -ib 3 -ob 5 | matrix -dim 2 -ib 2 -ob 3 | matrix -dim 3 -ib 1 -ob 1 | matrix -dim 3 -ib 1 -ob 3 | fail)[2]*);((dp;edg[0.5]?;(sccs | (sc || sct || {ur?;( (matrix -dp -ur -dim 1 -ib 3 -ob 5 | matrix -dp -ur -dim 2 -ib 2 -ob 3 | matrix -dp -ur -dim 3 -ib 1 -ob 1 | matrix -dp -ur -dim 3 -ib 1 -ob 3) || (kbo -ur -af | lpo -ur -af) || ( arctic -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || ( arctic -bz -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || fail) }restore || fail;(bounds -dp -rfc -qc || bounds -dp -all -rfc -qc || bounds -rfc -qc)[1] || fail ))*[6])! || (( kbo || (lpo | fail;(ref;lpo)) || fail;(bounds -rfc -qc) || fail)*[7])! || (rev;((dp;edg[0.5]?;(sccs | (sc || sct || {ur?;( (matrix -dp -ur -dim 1 -ib 3 -ob 5 | matrix -dp -ur -dim 2 -ib 2 -ob 3 | matrix -dp -ur -dim 3 -ib 1 -ob 1 | matrix -dp -ur -dim 3 -ib 1 -ob 3) || (kbo -ur -af | lpo -ur -af) || ( arctic -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || ( arctic -bz -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || fail) }restore || fail;(bounds -dp -rfc -qc || bounds -dp -all -rfc -qc || bounds -rfc -qc)[1] || fail ))*[6])! || (( kbo || (lpo | fail;(ref;lpo)) || fail;(bounds -rfc -qc) || fail)*[7])!)))))! || ((if linear then cr -closed -m -1;closed -strongly 7 else fail) || (if left-linear then cr -closed -m -1;(closed -development) else fail))! || (if linear then (cr -dup;(( lpo -quasi || (matrix -dim 1 -ib 3 -ob 4 | matrix -dim 2 -ib 2 -ob 2 | matrix -dim 3 -ib 1 -ob 2 | arctic -dim 2 -ib 2 -ob 2) || (if duplicating then fail else (bounds -rt || bounds -rt -qc))[1] || poly -ib 2 -ob 4 -nl2 -heuristic 1 || fail )[5]*);shift -lstar);(rule_labeling | rule_labeling -left)?;decreasing else fail)! || (if left-linear then (cr -dup;(( lpo -quasi || (matrix -dim 1 -ib 3 -ob 4 | matrix -dim 2 -ib 2 -ob 2 | matrix -dim 3 -ib 1 -ob 2 | arctic -dim 2 -ib 2 -ob 2) || (if duplicating then fail else (bounds -rt || bounds -rt -qc))[1] || poly -ib 2 -ob 4 -nl2 -heuristic 1 || fail )[5]*);shift -lstar);(rule_labeling | rule_labeling -left)?;decreasing else fail)! || (cr -cpcs2 -cpcscert; ((( matrix -dim 1 -ib 3 -ob 5 | matrix -dim 2 -ib 2 -ob 3 | matrix -dim 3 -ib 1 -ob 1 | matrix -dim 3 -ib 1 -ob 3 | fail)[2]*);((dp;edg[0.5]?;(sccs | (sc || sct || {ur?;( (matrix -dp -ur -dim 1 -ib 3 -ob 5 | matrix -dp -ur -dim 2 -ib 2 -ob 3 | matrix -dp -ur -dim 3 -ib 1 -ob 1 | matrix -dp -ur -dim 3 -ib 1 -ob 3) || (kbo -ur -af | lpo -ur -af) || ( arctic -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || ( arctic -bz -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || fail) }restore || fail;(bounds -dp -rfc -qc || bounds -dp -all -rfc -qc || bounds -rfc -qc)[1] || fail ))*[6])! || (( kbo || (lpo | fail;(ref;lpo)) || fail;(bounds -rfc -qc) || fail)*[7])! || (rev;((dp;edg[0.5]?;(sccs | (sc || sct || {ur?;( (matrix -dp -ur -dim 1 -ib 3 -ob 5 | matrix -dp -ur -dim 2 -ib 2 -ob 3 | matrix -dp -ur -dim 3 -ib 1 -ob 1 | matrix -dp -ur -dim 3 -ib 1 -ob 3) || (kbo -ur -af | lpo -ur -af) || ( arctic -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || ( arctic -bz -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || fail) }restore || fail;(bounds -dp -rfc -qc || bounds -dp -all -rfc -qc || bounds -rfc -qc)[1] || fail ))*[6])! || (( kbo || (lpo | fail;(ref;lpo)) || fail;(bounds -rfc -qc) || fail)*[7])!)))))!) || (( (nonconfluence -steps 0 -tcap -fun | nonconfluence -steps 2 -tcap -fun | nonconfluence -steps 25 -width 1 -tcap -fun) || (nonconfluence -steps 2 -tcap -var | nonconfluence -steps 25 -width 1 -tcap -var) || (nonconfluence -steps 0 -tree -cert -fun | nonconfluence -steps 0 -tree -cert -var | nonconfluence -steps 1 -tree -cert -fun | nonconfluence -steps 1 -tree -cert -var | nonconfluence -steps 2 -tree -cert -fun | nonconfluence -steps 2 -tree -cert -var | nonconfluence -steps 25 -tree -cert -fun | nonconfluence -steps 25 -tree -cert -var) )[6] | ((cr -m -1 -force);(redundant -narrowfwd -narrowbwd -size 7)))3*! || (((cr -m -1 -force);(redundant -remove 4)); ((cr -kb;((( matrix -dim 1 -ib 3 -ob 5 | matrix -dim 2 -ib 2 -ob 3 | matrix -dim 3 -ib 1 -ob 1 | matrix -dim 3 -ib 1 -ob 3 | fail)[2]*);((dp;edg[0.5]?;(sccs | (sc || sct || {ur?;( (matrix -dp -ur -dim 1 -ib 3 -ob 5 | matrix -dp -ur -dim 2 -ib 2 -ob 3 | matrix -dp -ur -dim 3 -ib 1 -ob 1 | matrix -dp -ur -dim 3 -ib 1 -ob 3) || (kbo -ur -af | lpo -ur -af) || ( arctic -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || ( arctic -bz -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || fail) }restore || fail;(bounds -dp -rfc -qc || bounds -dp -all -rfc -qc || bounds -rfc -qc)[1] || fail ))*[6])! || (( kbo || (lpo | fail;(ref;lpo)) || fail;(bounds -rfc -qc) || fail)*[7])! || (rev;((dp;edg[0.5]?;(sccs | (sc || sct || {ur?;( (matrix -dp -ur -dim 1 -ib 3 -ob 5 | matrix -dp -ur -dim 2 -ib 2 -ob 3 | matrix -dp -ur -dim 3 -ib 1 -ob 1 | matrix -dp -ur -dim 3 -ib 1 -ob 3) || (kbo -ur -af | lpo -ur -af) || ( arctic -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || ( arctic -bz -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || fail) }restore || fail;(bounds -dp -rfc -qc || bounds -dp -all -rfc -qc || bounds -rfc -qc)[1] || fail ))*[6])! || (( kbo || (lpo | fail;(ref;lpo)) || fail;(bounds -rfc -qc) || fail)*[7])!)))))! || ((if linear then cr -closed -m -1;closed -strongly 7 else fail) || (if left-linear then cr -closed -m -1;(closed -development) else fail))! || (if linear then (cr -dup;(( lpo -quasi || (matrix -dim 1 -ib 3 -ob 4 | matrix -dim 2 -ib 2 -ob 2 | matrix -dim 3 -ib 1 -ob 2 | arctic -dim 2 -ib 2 -ob 2) || (if duplicating then fail else (bounds -rt || bounds -rt -qc))[1] || poly -ib 2 -ob 4 -nl2 -heuristic 1 || fail )[5]*);shift -lstar);(rule_labeling | rule_labeling -left)?;decreasing else fail)! || (if left-linear then (cr -dup;(( lpo -quasi || (matrix -dim 1 -ib 3 -ob 4 | matrix -dim 2 -ib 2 -ob 2 | matrix -dim 3 -ib 1 -ob 2 | arctic -dim 2 -ib 2 -ob 2) || (if duplicating then fail else (bounds -rt || bounds -rt -qc))[1] || poly -ib 2 -ob 4 -nl2 -heuristic 1 || fail )[5]*);shift -lstar);(rule_labeling | rule_labeling -left)?;decreasing else fail)! || (cr -cpcs2 -cpcscert; ((( matrix -dim 1 -ib 3 -ob 5 | matrix -dim 2 -ib 2 -ob 3 | matrix -dim 3 -ib 1 -ob 1 | matrix -dim 3 -ib 1 -ob 3 | fail)[2]*);((dp;edg[0.5]?;(sccs | (sc || sct || {ur?;( (matrix -dp -ur -dim 1 -ib 3 -ob 5 | matrix -dp -ur -dim 2 -ib 2 -ob 3 | matrix -dp -ur -dim 3 -ib 1 -ob 1 | matrix -dp -ur -dim 3 -ib 1 -ob 3) || (kbo -ur -af | lpo -ur -af) || ( arctic -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || ( arctic -bz -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || fail) }restore || fail;(bounds -dp -rfc -qc || bounds -dp -all -rfc -qc || bounds -rfc -qc)[1] || fail ))*[6])! || (( kbo || (lpo | fail;(ref;lpo)) || fail;(bounds -rfc -qc) || fail)*[7])! || (rev;((dp;edg[0.5]?;(sccs | (sc || sct || {ur?;( (matrix -dp -ur -dim 1 -ib 3 -ob 5 | matrix -dp -ur -dim 2 -ib 2 -ob 3 | matrix -dp -ur -dim 3 -ib 1 -ob 1 | matrix -dp -ur -dim 3 -ib 1 -ob 3) || (kbo -ur -af | lpo -ur -af) || ( arctic -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || ( arctic -bz -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || fail) }restore || fail;(bounds -dp -rfc -qc || bounds -dp -all -rfc -qc || bounds -rfc -qc)[1] || fail ))*[6])! || (( kbo || (lpo | fail;(ref;lpo)) || fail;(bounds -rfc -qc) || fail)*[7])!)))))!))! || (((cr -force -redundant);(redundant)); ((cr -kb;((( matrix -dim 1 -ib 3 -ob 5 | matrix -dim 2 -ib 2 -ob 3 | matrix -dim 3 -ib 1 -ob 1 | matrix -dim 3 -ib 1 -ob 3 | fail)[2]*);((dp;edg[0.5]?;(sccs | (sc || sct || {ur?;( (matrix -dp -ur -dim 1 -ib 3 -ob 5 | matrix -dp -ur -dim 2 -ib 2 -ob 3 | matrix -dp -ur -dim 3 -ib 1 -ob 1 | matrix -dp -ur -dim 3 -ib 1 -ob 3) || (kbo -ur -af | lpo -ur -af) || ( arctic -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || ( arctic -bz -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || fail) }restore || fail;(bounds -dp -rfc -qc || bounds -dp -all -rfc -qc || bounds -rfc -qc)[1] || fail ))*[6])! || (( kbo || (lpo | fail;(ref;lpo)) || fail;(bounds -rfc -qc) || fail)*[7])! || (rev;((dp;edg[0.5]?;(sccs | (sc || sct || {ur?;( (matrix -dp -ur -dim 1 -ib 3 -ob 5 | matrix -dp -ur -dim 2 -ib 2 -ob 3 | matrix -dp -ur -dim 3 -ib 1 -ob 1 | matrix -dp -ur -dim 3 -ib 1 -ob 3) || (kbo -ur -af | lpo -ur -af) || ( arctic -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || ( arctic -bz -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || fail) }restore || fail;(bounds -dp -rfc -qc || bounds -dp -all -rfc -qc || bounds -rfc -qc)[1] || fail ))*[6])! || (( kbo || (lpo | fail;(ref;lpo)) || fail;(bounds -rfc -qc) || fail)*[7])!)))))! || ((if linear then cr -closed -m -1;closed -strongly 7 else fail) || (if left-linear then cr -closed -m -1;(closed -development) else fail))! || (if linear then (cr -dup;(( lpo -quasi || (matrix -dim 1 -ib 3 -ob 4 | matrix -dim 2 -ib 2 -ob 2 | matrix -dim 3 -ib 1 -ob 2 | arctic -dim 2 -ib 2 -ob 2) || (if duplicating then fail else (bounds -rt || bounds -rt -qc))[1] || poly -ib 2 -ob 4 -nl2 -heuristic 1 || fail )[5]*);shift -lstar);(rule_labeling | rule_labeling -left)?;decreasing else fail)! || (if left-linear then (cr -dup;(( lpo -quasi || (matrix -dim 1 -ib 3 -ob 4 | matrix -dim 2 -ib 2 -ob 2 | matrix -dim 3 -ib 1 -ob 2 | arctic -dim 2 -ib 2 -ob 2) || (if duplicating then fail else (bounds -rt || bounds -rt -qc))[1] || poly -ib 2 -ob 4 -nl2 -heuristic 1 || fail )[5]*);shift -lstar);(rule_labeling | rule_labeling -left)?;decreasing else fail)! || (cr -cpcs2 -cpcscert; ((( matrix -dim 1 -ib 3 -ob 5 | matrix -dim 2 -ib 2 -ob 3 | matrix -dim 3 -ib 1 -ob 1 | matrix -dim 3 -ib 1 -ob 3 | fail)[2]*);((dp;edg[0.5]?;(sccs | (sc || sct || {ur?;( (matrix -dp -ur -dim 1 -ib 3 -ob 5 | matrix -dp -ur -dim 2 -ib 2 -ob 3 | matrix -dp -ur -dim 3 -ib 1 -ob 1 | matrix -dp -ur -dim 3 -ib 1 -ob 3) || (kbo -ur -af | lpo -ur -af) || ( arctic -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || ( arctic -bz -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || fail) }restore || fail;(bounds -dp -rfc -qc || bounds -dp -all -rfc -qc || bounds -rfc -qc)[1] || fail ))*[6])! || (( kbo || (lpo | fail;(ref;lpo)) || fail;(bounds -rfc -qc) || fail)*[7])! || (rev;((dp;edg[0.5]?;(sccs | (sc || sct || {ur?;( (matrix -dp -ur -dim 1 -ib 3 -ob 5 | matrix -dp -ur -dim 2 -ib 2 -ob 3 | matrix -dp -ur -dim 3 -ib 1 -ob 1 | matrix -dp -ur -dim 3 -ib 1 -ob 3) || (kbo -ur -af | lpo -ur -af) || ( arctic -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || ( arctic -bz -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || fail) }restore || fail;(bounds -dp -rfc -qc || bounds -dp -all -rfc -qc || bounds -rfc -qc)[1] || fail ))*[6])! || (( kbo || (lpo | fail;(ref;lpo)) || fail;(bounds -rfc -qc) || fail)*[7])!)))))!)[15]?)3*! || (((cr -m -1 -force -redundant);(redundant -rhs)); ((cr -kb;((( matrix -dim 1 -ib 3 -ob 5 | matrix -dim 2 -ib 2 -ob 3 | matrix -dim 3 -ib 1 -ob 1 | matrix -dim 3 -ib 1 -ob 3 | fail)[2]*);((dp;edg[0.5]?;(sccs | (sc || sct || {ur?;( (matrix -dp -ur -dim 1 -ib 3 -ob 5 | matrix -dp -ur -dim 2 -ib 2 -ob 3 | matrix -dp -ur -dim 3 -ib 1 -ob 1 | matrix -dp -ur -dim 3 -ib 1 -ob 3) || (kbo -ur -af | lpo -ur -af) || ( arctic -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || ( arctic -bz -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || fail) }restore || fail;(bounds -dp -rfc -qc || bounds -dp -all -rfc -qc || bounds -rfc -qc)[1] || fail ))*[6])! || (( kbo || (lpo | fail;(ref;lpo)) || fail;(bounds -rfc -qc) || fail)*[7])! || (rev;((dp;edg[0.5]?;(sccs | (sc || sct || {ur?;( (matrix -dp -ur -dim 1 -ib 3 -ob 5 | matrix -dp -ur -dim 2 -ib 2 -ob 3 | matrix -dp -ur -dim 3 -ib 1 -ob 1 | matrix -dp -ur -dim 3 -ib 1 -ob 3) || (kbo -ur -af | lpo -ur -af) || ( arctic -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || ( arctic -bz -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || fail) }restore || fail;(bounds -dp -rfc -qc || bounds -dp -all -rfc -qc || bounds -rfc -qc)[1] || fail ))*[6])! || (( kbo || (lpo | fail;(ref;lpo)) || fail;(bounds -rfc -qc) || fail)*[7])!)))))! || ((if linear then cr -closed -m -1;closed -strongly 7 else fail) || (if left-linear then cr -closed -m -1;(closed -development) else fail))! || (if linear then (cr -dup;(( lpo -quasi || (matrix -dim 1 -ib 3 -ob 4 | matrix -dim 2 -ib 2 -ob 2 | matrix -dim 3 -ib 1 -ob 2 | arctic -dim 2 -ib 2 -ob 2) || (if duplicating then fail else (bounds -rt || bounds -rt -qc))[1] || poly -ib 2 -ob 4 -nl2 -heuristic 1 || fail )[5]*);shift -lstar);(rule_labeling | rule_labeling -left)?;decreasing else fail)! || (if left-linear then (cr -dup;(( lpo -quasi || (matrix -dim 1 -ib 3 -ob 4 | matrix -dim 2 -ib 2 -ob 2 | matrix -dim 3 -ib 1 -ob 2 | arctic -dim 2 -ib 2 -ob 2) || (if duplicating then fail else (bounds -rt || bounds -rt -qc))[1] || poly -ib 2 -ob 4 -nl2 -heuristic 1 || fail )[5]*);shift -lstar);(rule_labeling | rule_labeling -left)?;decreasing else fail)! || (cr -cpcs2 -cpcscert; ((( matrix -dim 1 -ib 3 -ob 5 | matrix -dim 2 -ib 2 -ob 3 | matrix -dim 3 -ib 1 -ob 1 | matrix -dim 3 -ib 1 -ob 3 | fail)[2]*);((dp;edg[0.5]?;(sccs | (sc || sct || {ur?;( (matrix -dp -ur -dim 1 -ib 3 -ob 5 | matrix -dp -ur -dim 2 -ib 2 -ob 3 | matrix -dp -ur -dim 3 -ib 1 -ob 1 | matrix -dp -ur -dim 3 -ib 1 -ob 3) || (kbo -ur -af | lpo -ur -af) || ( arctic -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || ( arctic -bz -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || fail) }restore || fail;(bounds -dp -rfc -qc || bounds -dp -all -rfc -qc || bounds -rfc -qc)[1] || fail ))*[6])! || (( kbo || (lpo | fail;(ref;lpo)) || fail;(bounds -rfc -qc) || fail)*[7])! || (rev;((dp;edg[0.5]?;(sccs | (sc || sct || {ur?;( (matrix -dp -ur -dim 1 -ib 3 -ob 5 | matrix -dp -ur -dim 2 -ib 2 -ob 3 | matrix -dp -ur -dim 3 -ib 1 -ob 1 | matrix -dp -ur -dim 3 -ib 1 -ob 3) || (kbo -ur -af | lpo -ur -af) || ( arctic -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || ( arctic -bz -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || fail) }restore || fail;(bounds -dp -rfc -qc || bounds -dp -all -rfc -qc || bounds -rfc -qc)[1] || fail ))*[6])! || (( kbo || (lpo | fail;(ref;lpo)) || fail;(bounds -rfc -qc) || fail)*[7])!)))))!)[15]?)3*! ))[54]