YES
Confluence Proof
Confluence Proof
by csi
Input
The rewrite relation of the following TRS is considered.
b(a(b(b(x)))) |
→ |
b(b(b(a(b(x))))) |
b(a(a(b(b(x))))) |
→ |
b(a(b(b(a(a(b(x))))))) |
b(a(a(a(b(b(x)))))) |
→ |
b(a(a(b(b(a(a(a(b(x))))))))) |
Proof
1 Redundant Rules Transformation
To prove that the TRS is (non-)confluent, we show (non-)confluence of the following
modified system:
b(a(a(a(b(b(x)))))) |
→ |
b(a(a(b(b(a(a(a(b(x))))))))) |
b(a(a(b(b(x))))) |
→ |
b(a(b(b(a(a(b(x))))))) |
b(a(b(b(x)))) |
→ |
b(b(b(a(b(x))))) |
b(a(a(a(b(b(x)))))) |
→ |
b(a(b(b(a(a(b(a(a(a(b(x))))))))))) |
b(a(a(b(b(x))))) |
→ |
b(b(b(a(b(a(a(b(x)))))))) |
All redundant rules that were added or removed can be
simulated in 2 steps
.
1.1 Decreasing Diagrams
1.1.1 Relative Termination Proof
The duplicating rules (R) terminate relative to the other rules (S).
1.1.1.1 R is empty
There are no rules in the TRS R. Hence, R/S is relative terminating.
1.1.2 Rule Labeling
Confluence is proven, because all critical peaks can be joined decreasingly
using the following rule labeling function (rules that are not shown have label 0).
-
b(a(a(a(b(b(x))))))→b(a(a(b(b(a(a(a(b(x))))))))) ↦ 0
-
b(a(a(b(b(x)))))→b(a(b(b(a(a(b(x))))))) ↦ 0
-
b(a(b(b(x))))→b(b(b(a(b(x))))) ↦ 0
-
b(a(a(a(b(b(x))))))→b(a(b(b(a(a(b(a(a(a(b(x))))))))))) ↦ 1
-
b(a(a(b(b(x)))))→b(b(b(a(b(a(a(b(x)))))))) ↦ 1
All critical pairs are joinable:
-
b(a(a(a(b(b(a(a(b(b(a(a(a(b(x185))))))))))))))→b(a(a(b(b(a(a(a(b(a(a(b(b(a(a(a(b(x185)))))))))))))))))←b(a(a(b(b(a(a(a(b(a(a(a(b(b(x185))))))))))))))
-
b(a(a(b(b(a(a(b(b(a(a(a(b(x186)))))))))))))→b(a(b(b(a(a(b(a(a(b(b(a(a(a(b(x186)))))))))))))))←b(a(b(b(a(a(b(a(a(a(b(b(x186))))))))))))
-
b(a(b(b(a(a(b(b(a(a(a(b(x187))))))))))))→b(b(b(a(b(a(a(b(b(a(a(a(b(x187)))))))))))))←b(b(b(a(b(a(a(a(b(b(x187))))))))))
-
b(a(a(b(b(a(a(a(b(x)))))))))→b(a(b(b(a(a(b(a(a(a(b(x)))))))))))
-
b(a(a(b(b(a(a(a(b(x)))))))))→b(b(b(a(b(a(a(b(a(a(a(b(x))))))))))))←b(a(b(b(a(a(b(a(a(a(b(x)))))))))))
-
b(a(a(a(b(b(a(a(b(b(a(a(a(b(x189))))))))))))))→b(a(b(b(a(a(b(a(a(a(b(a(a(b(b(a(a(a(b(x189)))))))))))))))))))←b(a(b(b(a(a(b(a(a(a(b(a(a(a(b(b(x189))))))))))))))))
-
b(a(a(b(b(a(a(b(b(a(a(a(b(x190)))))))))))))→b(b(b(a(b(a(a(b(a(a(b(b(a(a(a(b(x190))))))))))))))))←b(b(b(a(b(a(a(b(a(a(a(b(b(x190)))))))))))))
-
b(a(a(a(b(b(a(b(b(a(a(b(x191))))))))))))→b(a(a(b(b(a(a(a(b(a(b(b(a(a(b(x191)))))))))))))))←b(a(a(b(b(a(a(a(b(a(a(b(b(x191)))))))))))))
-
b(a(a(b(b(a(b(b(a(a(b(x192)))))))))))→b(a(b(b(a(a(b(a(b(b(a(a(b(x192)))))))))))))←b(a(b(b(a(a(b(a(a(b(b(x192)))))))))))
-
b(a(b(b(a(b(b(a(a(b(x193))))))))))→b(b(b(a(b(a(b(b(a(a(b(x193)))))))))))←b(b(b(a(b(a(a(b(b(x193)))))))))
-
b(a(a(a(b(b(a(b(b(a(a(b(x194))))))))))))→b(a(b(b(a(a(b(a(a(a(b(a(b(b(a(a(b(x194)))))))))))))))))←b(a(b(b(a(a(b(a(a(a(b(a(a(b(b(x194)))))))))))))))
-
b(a(b(b(a(a(b(x)))))))→b(b(b(a(b(a(a(b(x))))))))
-
b(a(a(b(b(a(b(b(a(a(b(x196)))))))))))→b(b(b(a(b(a(a(b(a(b(b(a(a(b(x196))))))))))))))←b(b(b(a(b(a(a(b(a(a(b(b(x196))))))))))))
-
b(a(a(a(b(b(b(b(a(b(x197))))))))))→b(a(a(b(b(a(a(a(b(b(b(a(b(x197)))))))))))))←b(a(a(b(b(a(a(a(b(a(b(b(x197))))))))))))
-
b(a(a(b(b(b(b(a(b(x198)))))))))→b(a(b(b(a(a(b(b(b(a(b(x198)))))))))))←b(a(b(b(a(a(b(a(b(b(x198))))))))))
-
b(a(b(b(b(b(a(b(x199))))))))→b(b(b(a(b(b(b(a(b(x199)))))))))←b(b(b(a(b(a(b(b(x199))))))))
-
b(a(a(a(b(b(b(b(a(b(x200))))))))))→b(a(b(b(a(a(b(a(a(a(b(b(b(a(b(x200)))))))))))))))←b(a(b(b(a(a(b(a(a(a(b(a(b(b(x200))))))))))))))
-
b(a(a(b(b(b(b(a(b(x201)))))))))→b(b(b(a(b(a(a(b(b(b(a(b(x201))))))))))))←b(b(b(a(b(a(a(b(a(b(b(x201)))))))))))
-
b(a(b(b(a(a(b(a(a(a(b(x)))))))))))←b(a(a(b(b(a(a(a(b(x)))))))))
-
b(a(b(b(a(a(b(a(a(a(b(x)))))))))))→b(b(b(a(b(a(a(b(a(a(a(b(x))))))))))))←b(a(a(b(b(a(a(a(b(x)))))))))
-
b(a(a(a(b(b(a(b(b(a(a(b(a(a(a(b(x203))))))))))))))))→b(a(a(b(b(a(a(a(b(a(b(b(a(a(b(a(a(a(b(x203)))))))))))))))))))←b(a(a(b(b(a(a(a(b(a(a(a(b(b(x203))))))))))))))
-
b(a(a(b(b(a(b(b(a(a(b(a(a(a(b(x204)))))))))))))))→b(a(b(b(a(a(b(a(b(b(a(a(b(a(a(a(b(x204)))))))))))))))))←b(a(b(b(a(a(b(a(a(a(b(b(x204))))))))))))
-
b(a(b(b(a(b(b(a(a(b(a(a(a(b(x205))))))))))))))→b(b(b(a(b(a(b(b(a(a(b(a(a(a(b(x205)))))))))))))))←b(b(b(a(b(a(a(a(b(b(x205))))))))))
-
b(a(a(a(b(b(a(b(b(a(a(b(a(a(a(b(x206))))))))))))))))→b(a(b(b(a(a(b(a(a(a(b(a(b(b(a(a(b(a(a(a(b(x206)))))))))))))))))))))←b(a(b(b(a(a(b(a(a(a(b(a(a(a(b(b(x206))))))))))))))))
-
b(a(a(b(b(a(b(b(a(a(b(a(a(a(b(x207)))))))))))))))→b(b(b(a(b(a(a(b(a(b(b(a(a(b(a(a(a(b(x207))))))))))))))))))←b(b(b(a(b(a(a(b(a(a(a(b(b(x207)))))))))))))
-
b(a(a(a(b(b(b(b(a(b(a(a(b(x208)))))))))))))→b(a(a(b(b(a(a(a(b(b(b(a(b(a(a(b(x208))))))))))))))))←b(a(a(b(b(a(a(a(b(a(a(b(b(x208)))))))))))))
-
b(b(b(a(b(a(a(b(x))))))))←b(a(b(b(a(a(b(x)))))))
-
b(a(a(b(b(b(b(a(b(a(a(b(x210))))))))))))→b(a(b(b(a(a(b(b(b(a(b(a(a(b(x210))))))))))))))←b(a(b(b(a(a(b(a(a(b(b(x210)))))))))))
-
b(a(b(b(b(b(a(b(a(a(b(x211)))))))))))→b(b(b(a(b(b(b(a(b(a(a(b(x211))))))))))))←b(b(b(a(b(a(a(b(b(x211)))))))))
-
b(a(a(a(b(b(b(b(a(b(a(a(b(x212)))))))))))))→b(a(b(b(a(a(b(a(a(a(b(b(b(a(b(a(a(b(x212))))))))))))))))))←b(a(b(b(a(a(b(a(a(a(b(a(a(b(b(x212)))))))))))))))
-
b(a(a(b(b(b(b(a(b(a(a(b(x213))))))))))))→b(b(b(a(b(a(a(b(b(b(a(b(a(a(b(x213)))))))))))))))←b(b(b(a(b(a(a(b(a(a(b(b(x213))))))))))))
Tool configuration
csi
- version: csi 1.2.5 [hg: unknown]
- strategy:
(sorted -ms*; ( ((cr -kb;((( matrix -dim 1 -ib 3 -ob 5 | matrix -dim 2 -ib 2 -ob 3 | matrix -dim 3 -ib 1 -ob 1 | matrix -dim 3 -ib 1 -ob 3 | fail)[2]*);((dp;edg[0.5]?;(sccs | (sc || sct || {ur?;( (matrix -dp -ur -dim 1 -ib 3 -ob 5 | matrix -dp -ur -dim 2 -ib 2 -ob 3 | matrix -dp -ur -dim 3 -ib 1 -ob 1 | matrix -dp -ur -dim 3 -ib 1 -ob 3) || (kbo -ur -af | lpo -ur -af) || ( arctic -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || ( arctic -bz -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || fail) }restore || fail;(bounds -dp -rfc -qc || bounds -dp -all -rfc -qc || bounds -rfc -qc)[1] || fail ))*[6])! || (( kbo || (lpo | fail;(ref;lpo)) || fail;(bounds -rfc -qc) || fail)*[7])! || (rev;((dp;edg[0.5]?;(sccs | (sc || sct || {ur?;( (matrix -dp -ur -dim 1 -ib 3 -ob 5 | matrix -dp -ur -dim 2 -ib 2 -ob 3 | matrix -dp -ur -dim 3 -ib 1 -ob 1 | matrix -dp -ur -dim 3 -ib 1 -ob 3) || (kbo -ur -af | lpo -ur -af) || ( arctic -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || ( arctic -bz -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || fail) }restore || fail;(bounds -dp -rfc -qc || bounds -dp -all -rfc -qc || bounds -rfc -qc)[1] || fail ))*[6])! || (( kbo || (lpo | fail;(ref;lpo)) || fail;(bounds -rfc -qc) || fail)*[7])!)))))! || ((if linear then cr -closed -m -1;closed -strongly 7 else fail) || (if left-linear then cr -closed -m -1;(closed -development) else fail))! || (if linear then (cr -dup;(( lpo -quasi || (matrix -dim 1 -ib 3 -ob 4 | matrix -dim 2 -ib 2 -ob 2 | matrix -dim 3 -ib 1 -ob 2 | arctic -dim 2 -ib 2 -ob 2) || (if duplicating then fail else (bounds -rt || bounds -rt -qc))[1] || poly -ib 2 -ob 4 -nl2 -heuristic 1 || fail )[5]*);shift -lstar);(rule_labeling | rule_labeling -left)?;decreasing else fail)! || (if left-linear then (cr -dup;(( lpo -quasi || (matrix -dim 1 -ib 3 -ob 4 | matrix -dim 2 -ib 2 -ob 2 | matrix -dim 3 -ib 1 -ob 2 | arctic -dim 2 -ib 2 -ob 2) || (if duplicating then fail else (bounds -rt || bounds -rt -qc))[1] || poly -ib 2 -ob 4 -nl2 -heuristic 1 || fail )[5]*);shift -lstar);(rule_labeling | rule_labeling -left)?;decreasing else fail)! || (cr -cpcs2 -cpcscert; ((( matrix -dim 1 -ib 3 -ob 5 | matrix -dim 2 -ib 2 -ob 3 | matrix -dim 3 -ib 1 -ob 1 | matrix -dim 3 -ib 1 -ob 3 | fail)[2]*);((dp;edg[0.5]?;(sccs | (sc || sct || {ur?;( (matrix -dp -ur -dim 1 -ib 3 -ob 5 | matrix -dp -ur -dim 2 -ib 2 -ob 3 | matrix -dp -ur -dim 3 -ib 1 -ob 1 | matrix -dp -ur -dim 3 -ib 1 -ob 3) || (kbo -ur -af | lpo -ur -af) || ( arctic -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || ( arctic -bz -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || fail) }restore || fail;(bounds -dp -rfc -qc || bounds -dp -all -rfc -qc || bounds -rfc -qc)[1] || fail ))*[6])! || (( kbo || (lpo | fail;(ref;lpo)) || fail;(bounds -rfc -qc) || fail)*[7])! || (rev;((dp;edg[0.5]?;(sccs | (sc || sct || {ur?;( (matrix -dp -ur -dim 1 -ib 3 -ob 5 | matrix -dp -ur -dim 2 -ib 2 -ob 3 | matrix -dp -ur -dim 3 -ib 1 -ob 1 | matrix -dp -ur -dim 3 -ib 1 -ob 3) || (kbo -ur -af | lpo -ur -af) || ( arctic -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || ( arctic -bz -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || fail) }restore || fail;(bounds -dp -rfc -qc || bounds -dp -all -rfc -qc || bounds -rfc -qc)[1] || fail ))*[6])! || (( kbo || (lpo | fail;(ref;lpo)) || fail;(bounds -rfc -qc) || fail)*[7])!)))))!) || (( (nonconfluence -steps 0 -tcap -fun | nonconfluence -steps 2 -tcap -fun | nonconfluence -steps 25 -width 1 -tcap -fun) || (nonconfluence -steps 2 -tcap -var | nonconfluence -steps 25 -width 1 -tcap -var) || (nonconfluence -steps 0 -tree -cert -fun | nonconfluence -steps 0 -tree -cert -var | nonconfluence -steps 1 -tree -cert -fun | nonconfluence -steps 1 -tree -cert -var | nonconfluence -steps 2 -tree -cert -fun | nonconfluence -steps 2 -tree -cert -var | nonconfluence -steps 25 -tree -cert -fun | nonconfluence -steps 25 -tree -cert -var) )[6] | ((cr -m -1 -force);(redundant -narrowfwd -narrowbwd -size 7)))3*! || (((cr -m -1 -force);(redundant -remove 4)); ((cr -kb;((( matrix -dim 1 -ib 3 -ob 5 | matrix -dim 2 -ib 2 -ob 3 | matrix -dim 3 -ib 1 -ob 1 | matrix -dim 3 -ib 1 -ob 3 | fail)[2]*);((dp;edg[0.5]?;(sccs | (sc || sct || {ur?;( (matrix -dp -ur -dim 1 -ib 3 -ob 5 | matrix -dp -ur -dim 2 -ib 2 -ob 3 | matrix -dp -ur -dim 3 -ib 1 -ob 1 | matrix -dp -ur -dim 3 -ib 1 -ob 3) || (kbo -ur -af | lpo -ur -af) || ( arctic -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || ( arctic -bz -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || fail) }restore || fail;(bounds -dp -rfc -qc || bounds -dp -all -rfc -qc || bounds -rfc -qc)[1] || fail ))*[6])! || (( kbo || (lpo | fail;(ref;lpo)) || fail;(bounds -rfc -qc) || fail)*[7])! || (rev;((dp;edg[0.5]?;(sccs | (sc || sct || {ur?;( (matrix -dp -ur -dim 1 -ib 3 -ob 5 | matrix -dp -ur -dim 2 -ib 2 -ob 3 | matrix -dp -ur -dim 3 -ib 1 -ob 1 | matrix -dp -ur -dim 3 -ib 1 -ob 3) || (kbo -ur -af | lpo -ur -af) || ( arctic -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || ( arctic -bz -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || fail) }restore || fail;(bounds -dp -rfc -qc || bounds -dp -all -rfc -qc || bounds -rfc -qc)[1] || fail ))*[6])! || (( kbo || (lpo | fail;(ref;lpo)) || fail;(bounds -rfc -qc) || fail)*[7])!)))))! || ((if linear then cr -closed -m -1;closed -strongly 7 else fail) || (if left-linear then cr -closed -m -1;(closed -development) else fail))! || (if linear then (cr -dup;(( lpo -quasi || (matrix -dim 1 -ib 3 -ob 4 | matrix -dim 2 -ib 2 -ob 2 | matrix -dim 3 -ib 1 -ob 2 | arctic -dim 2 -ib 2 -ob 2) || (if duplicating then fail else (bounds -rt || bounds -rt -qc))[1] || poly -ib 2 -ob 4 -nl2 -heuristic 1 || fail )[5]*);shift -lstar);(rule_labeling | rule_labeling -left)?;decreasing else fail)! || (if left-linear then (cr -dup;(( lpo -quasi || (matrix -dim 1 -ib 3 -ob 4 | matrix -dim 2 -ib 2 -ob 2 | matrix -dim 3 -ib 1 -ob 2 | arctic -dim 2 -ib 2 -ob 2) || (if duplicating then fail else (bounds -rt || bounds -rt -qc))[1] || poly -ib 2 -ob 4 -nl2 -heuristic 1 || fail )[5]*);shift -lstar);(rule_labeling | rule_labeling -left)?;decreasing else fail)! || (cr -cpcs2 -cpcscert; ((( matrix -dim 1 -ib 3 -ob 5 | matrix -dim 2 -ib 2 -ob 3 | matrix -dim 3 -ib 1 -ob 1 | matrix -dim 3 -ib 1 -ob 3 | fail)[2]*);((dp;edg[0.5]?;(sccs | (sc || sct || {ur?;( (matrix -dp -ur -dim 1 -ib 3 -ob 5 | matrix -dp -ur -dim 2 -ib 2 -ob 3 | matrix -dp -ur -dim 3 -ib 1 -ob 1 | matrix -dp -ur -dim 3 -ib 1 -ob 3) || (kbo -ur -af | lpo -ur -af) || ( arctic -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || ( arctic -bz -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || fail) }restore || fail;(bounds -dp -rfc -qc || bounds -dp -all -rfc -qc || bounds -rfc -qc)[1] || fail ))*[6])! || (( kbo || (lpo | fail;(ref;lpo)) || fail;(bounds -rfc -qc) || fail)*[7])! || (rev;((dp;edg[0.5]?;(sccs | (sc || sct || {ur?;( (matrix -dp -ur -dim 1 -ib 3 -ob 5 | matrix -dp -ur -dim 2 -ib 2 -ob 3 | matrix -dp -ur -dim 3 -ib 1 -ob 1 | matrix -dp -ur -dim 3 -ib 1 -ob 3) || (kbo -ur -af | lpo -ur -af) || ( arctic -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || ( arctic -bz -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || fail) }restore || fail;(bounds -dp -rfc -qc || bounds -dp -all -rfc -qc || bounds -rfc -qc)[1] || fail ))*[6])! || (( kbo || (lpo | fail;(ref;lpo)) || fail;(bounds -rfc -qc) || fail)*[7])!)))))!))! || (((cr -force -redundant);(redundant)); ((cr -kb;((( matrix -dim 1 -ib 3 -ob 5 | matrix -dim 2 -ib 2 -ob 3 | matrix -dim 3 -ib 1 -ob 1 | matrix -dim 3 -ib 1 -ob 3 | fail)[2]*);((dp;edg[0.5]?;(sccs | (sc || sct || {ur?;( (matrix -dp -ur -dim 1 -ib 3 -ob 5 | matrix -dp -ur -dim 2 -ib 2 -ob 3 | matrix -dp -ur -dim 3 -ib 1 -ob 1 | matrix -dp -ur -dim 3 -ib 1 -ob 3) || (kbo -ur -af | lpo -ur -af) || ( arctic -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || ( arctic -bz -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || fail) }restore || fail;(bounds -dp -rfc -qc || bounds -dp -all -rfc -qc || bounds -rfc -qc)[1] || fail ))*[6])! || (( kbo || (lpo | fail;(ref;lpo)) || fail;(bounds -rfc -qc) || fail)*[7])! || (rev;((dp;edg[0.5]?;(sccs | (sc || sct || {ur?;( (matrix -dp -ur -dim 1 -ib 3 -ob 5 | matrix -dp -ur -dim 2 -ib 2 -ob 3 | matrix -dp -ur -dim 3 -ib 1 -ob 1 | matrix -dp -ur -dim 3 -ib 1 -ob 3) || (kbo -ur -af | lpo -ur -af) || ( arctic -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || ( arctic -bz -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || fail) }restore || fail;(bounds -dp -rfc -qc || bounds -dp -all -rfc -qc || bounds -rfc -qc)[1] || fail ))*[6])! || (( kbo || (lpo | fail;(ref;lpo)) || fail;(bounds -rfc -qc) || fail)*[7])!)))))! || ((if linear then cr -closed -m -1;closed -strongly 7 else fail) || (if left-linear then cr -closed -m -1;(closed -development) else fail))! || (if linear then (cr -dup;(( lpo -quasi || (matrix -dim 1 -ib 3 -ob 4 | matrix -dim 2 -ib 2 -ob 2 | matrix -dim 3 -ib 1 -ob 2 | arctic -dim 2 -ib 2 -ob 2) || (if duplicating then fail else (bounds -rt || bounds -rt -qc))[1] || poly -ib 2 -ob 4 -nl2 -heuristic 1 || fail )[5]*);shift -lstar);(rule_labeling | rule_labeling -left)?;decreasing else fail)! || (if left-linear then (cr -dup;(( lpo -quasi || (matrix -dim 1 -ib 3 -ob 4 | matrix -dim 2 -ib 2 -ob 2 | matrix -dim 3 -ib 1 -ob 2 | arctic -dim 2 -ib 2 -ob 2) || (if duplicating then fail else (bounds -rt || bounds -rt -qc))[1] || poly -ib 2 -ob 4 -nl2 -heuristic 1 || fail )[5]*);shift -lstar);(rule_labeling | rule_labeling -left)?;decreasing else fail)! || (cr -cpcs2 -cpcscert; ((( matrix -dim 1 -ib 3 -ob 5 | matrix -dim 2 -ib 2 -ob 3 | matrix -dim 3 -ib 1 -ob 1 | matrix -dim 3 -ib 1 -ob 3 | fail)[2]*);((dp;edg[0.5]?;(sccs | (sc || sct || {ur?;( (matrix -dp -ur -dim 1 -ib 3 -ob 5 | matrix -dp -ur -dim 2 -ib 2 -ob 3 | matrix -dp -ur -dim 3 -ib 1 -ob 1 | matrix -dp -ur -dim 3 -ib 1 -ob 3) || (kbo -ur -af | lpo -ur -af) || ( arctic -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || ( arctic -bz -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || fail) }restore || fail;(bounds -dp -rfc -qc || bounds -dp -all -rfc -qc || bounds -rfc -qc)[1] || fail ))*[6])! || (( kbo || (lpo | fail;(ref;lpo)) || fail;(bounds -rfc -qc) || fail)*[7])! || (rev;((dp;edg[0.5]?;(sccs | (sc || sct || {ur?;( (matrix -dp -ur -dim 1 -ib 3 -ob 5 | matrix -dp -ur -dim 2 -ib 2 -ob 3 | matrix -dp -ur -dim 3 -ib 1 -ob 1 | matrix -dp -ur -dim 3 -ib 1 -ob 3) || (kbo -ur -af | lpo -ur -af) || ( arctic -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || ( arctic -bz -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || fail) }restore || fail;(bounds -dp -rfc -qc || bounds -dp -all -rfc -qc || bounds -rfc -qc)[1] || fail ))*[6])! || (( kbo || (lpo | fail;(ref;lpo)) || fail;(bounds -rfc -qc) || fail)*[7])!)))))!)[15]?)3*! || (((cr -m -1 -force -redundant);(redundant -rhs)); ((cr -kb;((( matrix -dim 1 -ib 3 -ob 5 | matrix -dim 2 -ib 2 -ob 3 | matrix -dim 3 -ib 1 -ob 1 | matrix -dim 3 -ib 1 -ob 3 | fail)[2]*);((dp;edg[0.5]?;(sccs | (sc || sct || {ur?;( (matrix -dp -ur -dim 1 -ib 3 -ob 5 | matrix -dp -ur -dim 2 -ib 2 -ob 3 | matrix -dp -ur -dim 3 -ib 1 -ob 1 | matrix -dp -ur -dim 3 -ib 1 -ob 3) || (kbo -ur -af | lpo -ur -af) || ( arctic -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || ( arctic -bz -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || fail) }restore || fail;(bounds -dp -rfc -qc || bounds -dp -all -rfc -qc || bounds -rfc -qc)[1] || fail ))*[6])! || (( kbo || (lpo | fail;(ref;lpo)) || fail;(bounds -rfc -qc) || fail)*[7])! || (rev;((dp;edg[0.5]?;(sccs | (sc || sct || {ur?;( (matrix -dp -ur -dim 1 -ib 3 -ob 5 | matrix -dp -ur -dim 2 -ib 2 -ob 3 | matrix -dp -ur -dim 3 -ib 1 -ob 1 | matrix -dp -ur -dim 3 -ib 1 -ob 3) || (kbo -ur -af | lpo -ur -af) || ( arctic -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || ( arctic -bz -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || fail) }restore || fail;(bounds -dp -rfc -qc || bounds -dp -all -rfc -qc || bounds -rfc -qc)[1] || fail ))*[6])! || (( kbo || (lpo | fail;(ref;lpo)) || fail;(bounds -rfc -qc) || fail)*[7])!)))))! || ((if linear then cr -closed -m -1;closed -strongly 7 else fail) || (if left-linear then cr -closed -m -1;(closed -development) else fail))! || (if linear then (cr -dup;(( lpo -quasi || (matrix -dim 1 -ib 3 -ob 4 | matrix -dim 2 -ib 2 -ob 2 | matrix -dim 3 -ib 1 -ob 2 | arctic -dim 2 -ib 2 -ob 2) || (if duplicating then fail else (bounds -rt || bounds -rt -qc))[1] || poly -ib 2 -ob 4 -nl2 -heuristic 1 || fail )[5]*);shift -lstar);(rule_labeling | rule_labeling -left)?;decreasing else fail)! || (if left-linear then (cr -dup;(( lpo -quasi || (matrix -dim 1 -ib 3 -ob 4 | matrix -dim 2 -ib 2 -ob 2 | matrix -dim 3 -ib 1 -ob 2 | arctic -dim 2 -ib 2 -ob 2) || (if duplicating then fail else (bounds -rt || bounds -rt -qc))[1] || poly -ib 2 -ob 4 -nl2 -heuristic 1 || fail )[5]*);shift -lstar);(rule_labeling | rule_labeling -left)?;decreasing else fail)! || (cr -cpcs2 -cpcscert; ((( matrix -dim 1 -ib 3 -ob 5 | matrix -dim 2 -ib 2 -ob 3 | matrix -dim 3 -ib 1 -ob 1 | matrix -dim 3 -ib 1 -ob 3 | fail)[2]*);((dp;edg[0.5]?;(sccs | (sc || sct || {ur?;( (matrix -dp -ur -dim 1 -ib 3 -ob 5 | matrix -dp -ur -dim 2 -ib 2 -ob 3 | matrix -dp -ur -dim 3 -ib 1 -ob 1 | matrix -dp -ur -dim 3 -ib 1 -ob 3) || (kbo -ur -af | lpo -ur -af) || ( arctic -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || ( arctic -bz -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || fail) }restore || fail;(bounds -dp -rfc -qc || bounds -dp -all -rfc -qc || bounds -rfc -qc)[1] || fail ))*[6])! || (( kbo || (lpo | fail;(ref;lpo)) || fail;(bounds -rfc -qc) || fail)*[7])! || (rev;((dp;edg[0.5]?;(sccs | (sc || sct || {ur?;( (matrix -dp -ur -dim 1 -ib 3 -ob 5 | matrix -dp -ur -dim 2 -ib 2 -ob 3 | matrix -dp -ur -dim 3 -ib 1 -ob 1 | matrix -dp -ur -dim 3 -ib 1 -ob 3) || (kbo -ur -af | lpo -ur -af) || ( arctic -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || ( arctic -bz -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || fail) }restore || fail;(bounds -dp -rfc -qc || bounds -dp -all -rfc -qc || bounds -rfc -qc)[1] || fail ))*[6])! || (( kbo || (lpo | fail;(ref;lpo)) || fail;(bounds -rfc -qc) || fail)*[7])!)))))!)[15]?)3*! ))[54]