YES
Confluence Proof
Confluence Proof
by csi
Input
The rewrite relation of the following TRS is considered.
+(0,y) |
→ |
y |
+(x,0) |
→ |
x |
+(s(x),y) |
→ |
s(+(x,y)) |
+(x,s(y)) |
→ |
s(+(x,y)) |
+(x,y) |
→ |
+(y,x) |
Proof
1 Redundant Rules Transformation
To prove that the TRS is (non-)confluent, we show (non-)confluence of the following
modified system:
+(x,y) |
→ |
+(y,x) |
+(x,s(y)) |
→ |
s(+(x,y)) |
+(s(x),y) |
→ |
s(+(x,y)) |
+(x,0) |
→ |
x |
+(0,y) |
→ |
y |
+(x,y) |
→ |
+(x,y) |
+(x,s(y)) |
→ |
s(+(y,x)) |
+(s(x),y) |
→ |
s(+(y,x)) |
All redundant rules that were added or removed can be
simulated in 2 steps
.
1.1 Decreasing Diagrams
1.1.1 Relative Termination Proof
The duplicating rules (R) terminate relative to the other rules (S).
1.1.1.1 R is empty
There are no rules in the TRS R. Hence, R/S is relative terminating.
1.1.2 Rule Labeling
Confluence is proven, because all critical peaks can be joined decreasingly
using the following rule labeling function (rules that are not shown have label 0).
-
+(x,y)→+(y,x) ↦ 0
-
+(x,s(y))→s(+(x,y)) ↦ 0
-
+(s(x),y)→s(+(x,y)) ↦ 0
-
+(x,0)→x ↦ 0
-
+(0,y)→y ↦ 0
-
+(x,y)→+(x,y) ↦ 0
-
+(x,s(y))→s(+(y,x)) ↦ 0
-
+(s(x),y)→s(+(y,x)) ↦ 0
All critical pairs are joinable:
-
+(s(y),x)→s(+(y,x))←s(+(x,y))
-
+(s(y),x)→s(+(x,y))
-
+(y,s(x))→s(+(y,x))←s(+(x,y))
-
+(y,s(x))→s(+(x,y))
-
+(0,x)→x
-
+(y,0)→y
-
+(y,x)←+(x,y)
-
+(y,x)→+(x,y)
-
+(s(y),x)→s(+(y,x))
-
+(s(y),x)→s(+(x,y))←s(+(y,x))
-
+(y,s(x))→s(+(y,x))
-
+(y,s(x))→s(+(x,y))←s(+(y,x))
-
s(+(x,x311))←+(s(x311),x)
-
s(+(x,x311))→s(+(x311,x))←+(s(x311),x)
-
s(+(s(x),x313))→s(s(+(x,x313)))←s(+(x,s(x313)))
-
s(+(s(x),x313))→s(s(+(x313,x)))←s(+(x,s(x313)))
-
s(+(0,x315))→s(x315)
-
s(+(x,x317))←+(x,s(x317))
-
s(+(x,x317))→s(+(x317,x))←+(x,s(x317))
-
s(+(x,y))←s(+(y,x))
-
s(+(x,y))→s(+(y,x))
-
s(+(s(x),x321))→s(s(+(x,x321)))←s(+(s(x321),x))
-
s(+(s(x),x321))→s(s(+(x321,x)))←s(+(s(x321),x))
-
s(+(x322,y))←+(y,s(x322))
-
s(+(x322,y))→s(+(y,x322))←+(y,s(x322))
-
s(+(x324,s(y)))→s(s(+(x324,y)))←s(+(s(x324),y))
-
s(+(x324,s(y)))→s(s(+(y,x324)))←s(+(s(x324),y))
-
s(+(x326,0))→s(x326)
-
s(+(x328,y))←+(s(x328),y)
-
s(+(x328,y))→s(+(y,x328))←+(s(x328),y)
-
s(+(x330,s(y)))→s(s(+(x330,y)))←s(+(y,s(x330)))
-
s(+(x330,s(y)))→s(s(+(y,x330)))←s(+(y,s(x330)))
-
s(+(x,y))←s(+(y,x))
-
s(+(x,y))→s(+(y,x))
-
x←+(0,x)
-
s(x)←s(+(x,0))
- 0
-
x←+(x,0)
-
s(x)←s(+(0,x))
-
y←+(y,0)
-
s(y)←s(+(0,y))
- 0
-
y←+(0,y)
-
s(y)←s(+(y,0))
-
+(x,y)←+(y,x)
-
+(x,y)→+(y,x)
-
+(x,s(y))→s(+(x,y))
-
+(x,s(y))→s(+(y,x))←s(+(x,y))
-
+(s(x),y)→s(+(x,y))
-
+(s(x),y)→s(+(y,x))←s(+(x,y))
-
+(x,0)→x
-
+(0,y)→y
-
+(x,s(y))→s(+(x,y))←s(+(y,x))
-
+(x,s(y))→s(+(y,x))
-
+(s(x),y)→s(+(x,y))←s(+(y,x))
-
+(s(x),y)→s(+(y,x))
-
s(+(x359,x))←+(s(x359),x)
-
s(+(x359,x))→s(+(x,x359))←+(s(x359),x)
-
s(+(y,x))←s(+(x,y))
-
s(+(y,x))→s(+(x,y))
-
s(+(x363,s(x)))→s(s(+(x363,x)))←s(+(x,s(x363)))
-
s(+(x363,s(x)))→s(s(+(x,x363)))←s(+(x,s(x363)))
-
s(+(x365,0))→s(x365)
-
s(+(x367,x))←+(x,s(x367))
-
s(+(x367,x))→s(+(x,x367))←+(x,s(x367))
-
s(+(x369,s(x)))→s(s(+(x369,x)))←s(+(s(x369),x))
-
s(+(x369,s(x)))→s(s(+(x,x369)))←s(+(s(x369),x))
-
s(+(y,x370))←+(y,s(x370))
-
s(+(y,x370))→s(+(x370,y))←+(y,s(x370))
-
s(+(s(y),x372))→s(s(+(y,x372)))←s(+(s(x372),y))
-
s(+(s(y),x372))→s(s(+(x372,y)))←s(+(s(x372),y))
-
s(+(y,x))←s(+(x,y))
-
s(+(y,x))→s(+(x,y))
-
s(+(0,x376))→s(x376)
-
s(+(y,x378))←+(s(x378),y)
-
s(+(y,x378))→s(+(x378,y))←+(s(x378),y)
-
s(+(s(y),x380))→s(s(+(y,x380)))←s(+(y,s(x380)))
-
s(+(s(y),x380))→s(s(+(x380,y)))←s(+(y,s(x380)))
Tool configuration
csi
- version: csi 1.2.5 [hg: unknown]
- strategy:
(sorted -ms*; ( ((cr -kb;((( matrix -dim 1 -ib 3 -ob 5 | matrix -dim 2 -ib 2 -ob 3 | matrix -dim 3 -ib 1 -ob 1 | matrix -dim 3 -ib 1 -ob 3 | fail)[2]*);((dp;edg[0.5]?;(sccs | (sc || sct || {ur?;( (matrix -dp -ur -dim 1 -ib 3 -ob 5 | matrix -dp -ur -dim 2 -ib 2 -ob 3 | matrix -dp -ur -dim 3 -ib 1 -ob 1 | matrix -dp -ur -dim 3 -ib 1 -ob 3) || (kbo -ur -af | lpo -ur -af) || ( arctic -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || ( arctic -bz -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || fail) }restore || fail;(bounds -dp -rfc -qc || bounds -dp -all -rfc -qc || bounds -rfc -qc)[1] || fail ))*[6])! || (( kbo || (lpo | fail;(ref;lpo)) || fail;(bounds -rfc -qc) || fail)*[7])! || (rev;((dp;edg[0.5]?;(sccs | (sc || sct || {ur?;( (matrix -dp -ur -dim 1 -ib 3 -ob 5 | matrix -dp -ur -dim 2 -ib 2 -ob 3 | matrix -dp -ur -dim 3 -ib 1 -ob 1 | matrix -dp -ur -dim 3 -ib 1 -ob 3) || (kbo -ur -af | lpo -ur -af) || ( arctic -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || ( arctic -bz -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || fail) }restore || fail;(bounds -dp -rfc -qc || bounds -dp -all -rfc -qc || bounds -rfc -qc)[1] || fail ))*[6])! || (( kbo || (lpo | fail;(ref;lpo)) || fail;(bounds -rfc -qc) || fail)*[7])!)))))! || ((if linear then cr -closed -m -1;closed -strongly 7 else fail) || (if left-linear then cr -closed -m -1;(closed -development) else fail))! || (if linear then (cr -dup;(( lpo -quasi || (matrix -dim 1 -ib 3 -ob 4 | matrix -dim 2 -ib 2 -ob 2 | matrix -dim 3 -ib 1 -ob 2 | arctic -dim 2 -ib 2 -ob 2) || (if duplicating then fail else (bounds -rt || bounds -rt -qc))[1] || poly -ib 2 -ob 4 -nl2 -heuristic 1 || fail )[5]*);shift -lstar);(rule_labeling | rule_labeling -left)?;decreasing else fail)! || (if left-linear then (cr -dup;(( lpo -quasi || (matrix -dim 1 -ib 3 -ob 4 | matrix -dim 2 -ib 2 -ob 2 | matrix -dim 3 -ib 1 -ob 2 | arctic -dim 2 -ib 2 -ob 2) || (if duplicating then fail else (bounds -rt || bounds -rt -qc))[1] || poly -ib 2 -ob 4 -nl2 -heuristic 1 || fail )[5]*);shift -lstar);(rule_labeling | rule_labeling -left)?;decreasing else fail)! || (cr -cpcs2 -cpcscert; ((( matrix -dim 1 -ib 3 -ob 5 | matrix -dim 2 -ib 2 -ob 3 | matrix -dim 3 -ib 1 -ob 1 | matrix -dim 3 -ib 1 -ob 3 | fail)[2]*);((dp;edg[0.5]?;(sccs | (sc || sct || {ur?;( (matrix -dp -ur -dim 1 -ib 3 -ob 5 | matrix -dp -ur -dim 2 -ib 2 -ob 3 | matrix -dp -ur -dim 3 -ib 1 -ob 1 | matrix -dp -ur -dim 3 -ib 1 -ob 3) || (kbo -ur -af | lpo -ur -af) || ( arctic -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || ( arctic -bz -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || fail) }restore || fail;(bounds -dp -rfc -qc || bounds -dp -all -rfc -qc || bounds -rfc -qc)[1] || fail ))*[6])! || (( kbo || (lpo | fail;(ref;lpo)) || fail;(bounds -rfc -qc) || fail)*[7])! || (rev;((dp;edg[0.5]?;(sccs | (sc || sct || {ur?;( (matrix -dp -ur -dim 1 -ib 3 -ob 5 | matrix -dp -ur -dim 2 -ib 2 -ob 3 | matrix -dp -ur -dim 3 -ib 1 -ob 1 | matrix -dp -ur -dim 3 -ib 1 -ob 3) || (kbo -ur -af | lpo -ur -af) || ( arctic -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || ( arctic -bz -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || fail) }restore || fail;(bounds -dp -rfc -qc || bounds -dp -all -rfc -qc || bounds -rfc -qc)[1] || fail ))*[6])! || (( kbo || (lpo | fail;(ref;lpo)) || fail;(bounds -rfc -qc) || fail)*[7])!)))))!) || (( (nonconfluence -steps 0 -tcap -fun | nonconfluence -steps 2 -tcap -fun | nonconfluence -steps 25 -width 1 -tcap -fun) || (nonconfluence -steps 2 -tcap -var | nonconfluence -steps 25 -width 1 -tcap -var) || (nonconfluence -steps 0 -tree -cert -fun | nonconfluence -steps 0 -tree -cert -var | nonconfluence -steps 1 -tree -cert -fun | nonconfluence -steps 1 -tree -cert -var | nonconfluence -steps 2 -tree -cert -fun | nonconfluence -steps 2 -tree -cert -var | nonconfluence -steps 25 -tree -cert -fun | nonconfluence -steps 25 -tree -cert -var) )[6] | ((cr -m -1 -force);(redundant -narrowfwd -narrowbwd -size 7)))3*! || (((cr -m -1 -force);(redundant -remove 4)); ((cr -kb;((( matrix -dim 1 -ib 3 -ob 5 | matrix -dim 2 -ib 2 -ob 3 | matrix -dim 3 -ib 1 -ob 1 | matrix -dim 3 -ib 1 -ob 3 | fail)[2]*);((dp;edg[0.5]?;(sccs | (sc || sct || {ur?;( (matrix -dp -ur -dim 1 -ib 3 -ob 5 | matrix -dp -ur -dim 2 -ib 2 -ob 3 | matrix -dp -ur -dim 3 -ib 1 -ob 1 | matrix -dp -ur -dim 3 -ib 1 -ob 3) || (kbo -ur -af | lpo -ur -af) || ( arctic -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || ( arctic -bz -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || fail) }restore || fail;(bounds -dp -rfc -qc || bounds -dp -all -rfc -qc || bounds -rfc -qc)[1] || fail ))*[6])! || (( kbo || (lpo | fail;(ref;lpo)) || fail;(bounds -rfc -qc) || fail)*[7])! || (rev;((dp;edg[0.5]?;(sccs | (sc || sct || {ur?;( (matrix -dp -ur -dim 1 -ib 3 -ob 5 | matrix -dp -ur -dim 2 -ib 2 -ob 3 | matrix -dp -ur -dim 3 -ib 1 -ob 1 | matrix -dp -ur -dim 3 -ib 1 -ob 3) || (kbo -ur -af | lpo -ur -af) || ( arctic -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || ( arctic -bz -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || fail) }restore || fail;(bounds -dp -rfc -qc || bounds -dp -all -rfc -qc || bounds -rfc -qc)[1] || fail ))*[6])! || (( kbo || (lpo | fail;(ref;lpo)) || fail;(bounds -rfc -qc) || fail)*[7])!)))))! || ((if linear then cr -closed -m -1;closed -strongly 7 else fail) || (if left-linear then cr -closed -m -1;(closed -development) else fail))! || (if linear then (cr -dup;(( lpo -quasi || (matrix -dim 1 -ib 3 -ob 4 | matrix -dim 2 -ib 2 -ob 2 | matrix -dim 3 -ib 1 -ob 2 | arctic -dim 2 -ib 2 -ob 2) || (if duplicating then fail else (bounds -rt || bounds -rt -qc))[1] || poly -ib 2 -ob 4 -nl2 -heuristic 1 || fail )[5]*);shift -lstar);(rule_labeling | rule_labeling -left)?;decreasing else fail)! || (if left-linear then (cr -dup;(( lpo -quasi || (matrix -dim 1 -ib 3 -ob 4 | matrix -dim 2 -ib 2 -ob 2 | matrix -dim 3 -ib 1 -ob 2 | arctic -dim 2 -ib 2 -ob 2) || (if duplicating then fail else (bounds -rt || bounds -rt -qc))[1] || poly -ib 2 -ob 4 -nl2 -heuristic 1 || fail )[5]*);shift -lstar);(rule_labeling | rule_labeling -left)?;decreasing else fail)! || (cr -cpcs2 -cpcscert; ((( matrix -dim 1 -ib 3 -ob 5 | matrix -dim 2 -ib 2 -ob 3 | matrix -dim 3 -ib 1 -ob 1 | matrix -dim 3 -ib 1 -ob 3 | fail)[2]*);((dp;edg[0.5]?;(sccs | (sc || sct || {ur?;( (matrix -dp -ur -dim 1 -ib 3 -ob 5 | matrix -dp -ur -dim 2 -ib 2 -ob 3 | matrix -dp -ur -dim 3 -ib 1 -ob 1 | matrix -dp -ur -dim 3 -ib 1 -ob 3) || (kbo -ur -af | lpo -ur -af) || ( arctic -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || ( arctic -bz -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || fail) }restore || fail;(bounds -dp -rfc -qc || bounds -dp -all -rfc -qc || bounds -rfc -qc)[1] || fail ))*[6])! || (( kbo || (lpo | fail;(ref;lpo)) || fail;(bounds -rfc -qc) || fail)*[7])! || (rev;((dp;edg[0.5]?;(sccs | (sc || sct || {ur?;( (matrix -dp -ur -dim 1 -ib 3 -ob 5 | matrix -dp -ur -dim 2 -ib 2 -ob 3 | matrix -dp -ur -dim 3 -ib 1 -ob 1 | matrix -dp -ur -dim 3 -ib 1 -ob 3) || (kbo -ur -af | lpo -ur -af) || ( arctic -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || ( arctic -bz -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || fail) }restore || fail;(bounds -dp -rfc -qc || bounds -dp -all -rfc -qc || bounds -rfc -qc)[1] || fail ))*[6])! || (( kbo || (lpo | fail;(ref;lpo)) || fail;(bounds -rfc -qc) || fail)*[7])!)))))!))! || (((cr -force -redundant);(redundant)); ((cr -kb;((( matrix -dim 1 -ib 3 -ob 5 | matrix -dim 2 -ib 2 -ob 3 | matrix -dim 3 -ib 1 -ob 1 | matrix -dim 3 -ib 1 -ob 3 | fail)[2]*);((dp;edg[0.5]?;(sccs | (sc || sct || {ur?;( (matrix -dp -ur -dim 1 -ib 3 -ob 5 | matrix -dp -ur -dim 2 -ib 2 -ob 3 | matrix -dp -ur -dim 3 -ib 1 -ob 1 | matrix -dp -ur -dim 3 -ib 1 -ob 3) || (kbo -ur -af | lpo -ur -af) || ( arctic -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || ( arctic -bz -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || fail) }restore || fail;(bounds -dp -rfc -qc || bounds -dp -all -rfc -qc || bounds -rfc -qc)[1] || fail ))*[6])! || (( kbo || (lpo | fail;(ref;lpo)) || fail;(bounds -rfc -qc) || fail)*[7])! || (rev;((dp;edg[0.5]?;(sccs | (sc || sct || {ur?;( (matrix -dp -ur -dim 1 -ib 3 -ob 5 | matrix -dp -ur -dim 2 -ib 2 -ob 3 | matrix -dp -ur -dim 3 -ib 1 -ob 1 | matrix -dp -ur -dim 3 -ib 1 -ob 3) || (kbo -ur -af | lpo -ur -af) || ( arctic -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || ( arctic -bz -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || fail) }restore || fail;(bounds -dp -rfc -qc || bounds -dp -all -rfc -qc || bounds -rfc -qc)[1] || fail ))*[6])! || (( kbo || (lpo | fail;(ref;lpo)) || fail;(bounds -rfc -qc) || fail)*[7])!)))))! || ((if linear then cr -closed -m -1;closed -strongly 7 else fail) || (if left-linear then cr -closed -m -1;(closed -development) else fail))! || (if linear then (cr -dup;(( lpo -quasi || (matrix -dim 1 -ib 3 -ob 4 | matrix -dim 2 -ib 2 -ob 2 | matrix -dim 3 -ib 1 -ob 2 | arctic -dim 2 -ib 2 -ob 2) || (if duplicating then fail else (bounds -rt || bounds -rt -qc))[1] || poly -ib 2 -ob 4 -nl2 -heuristic 1 || fail )[5]*);shift -lstar);(rule_labeling | rule_labeling -left)?;decreasing else fail)! || (if left-linear then (cr -dup;(( lpo -quasi || (matrix -dim 1 -ib 3 -ob 4 | matrix -dim 2 -ib 2 -ob 2 | matrix -dim 3 -ib 1 -ob 2 | arctic -dim 2 -ib 2 -ob 2) || (if duplicating then fail else (bounds -rt || bounds -rt -qc))[1] || poly -ib 2 -ob 4 -nl2 -heuristic 1 || fail )[5]*);shift -lstar);(rule_labeling | rule_labeling -left)?;decreasing else fail)! || (cr -cpcs2 -cpcscert; ((( matrix -dim 1 -ib 3 -ob 5 | matrix -dim 2 -ib 2 -ob 3 | matrix -dim 3 -ib 1 -ob 1 | matrix -dim 3 -ib 1 -ob 3 | fail)[2]*);((dp;edg[0.5]?;(sccs | (sc || sct || {ur?;( (matrix -dp -ur -dim 1 -ib 3 -ob 5 | matrix -dp -ur -dim 2 -ib 2 -ob 3 | matrix -dp -ur -dim 3 -ib 1 -ob 1 | matrix -dp -ur -dim 3 -ib 1 -ob 3) || (kbo -ur -af | lpo -ur -af) || ( arctic -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || ( arctic -bz -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || fail) }restore || fail;(bounds -dp -rfc -qc || bounds -dp -all -rfc -qc || bounds -rfc -qc)[1] || fail ))*[6])! || (( kbo || (lpo | fail;(ref;lpo)) || fail;(bounds -rfc -qc) || fail)*[7])! || (rev;((dp;edg[0.5]?;(sccs | (sc || sct || {ur?;( (matrix -dp -ur -dim 1 -ib 3 -ob 5 | matrix -dp -ur -dim 2 -ib 2 -ob 3 | matrix -dp -ur -dim 3 -ib 1 -ob 1 | matrix -dp -ur -dim 3 -ib 1 -ob 3) || (kbo -ur -af | lpo -ur -af) || ( arctic -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || ( arctic -bz -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || fail) }restore || fail;(bounds -dp -rfc -qc || bounds -dp -all -rfc -qc || bounds -rfc -qc)[1] || fail ))*[6])! || (( kbo || (lpo | fail;(ref;lpo)) || fail;(bounds -rfc -qc) || fail)*[7])!)))))!)[15]?)3*! || (((cr -m -1 -force -redundant);(redundant -rhs)); ((cr -kb;((( matrix -dim 1 -ib 3 -ob 5 | matrix -dim 2 -ib 2 -ob 3 | matrix -dim 3 -ib 1 -ob 1 | matrix -dim 3 -ib 1 -ob 3 | fail)[2]*);((dp;edg[0.5]?;(sccs | (sc || sct || {ur?;( (matrix -dp -ur -dim 1 -ib 3 -ob 5 | matrix -dp -ur -dim 2 -ib 2 -ob 3 | matrix -dp -ur -dim 3 -ib 1 -ob 1 | matrix -dp -ur -dim 3 -ib 1 -ob 3) || (kbo -ur -af | lpo -ur -af) || ( arctic -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || ( arctic -bz -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || fail) }restore || fail;(bounds -dp -rfc -qc || bounds -dp -all -rfc -qc || bounds -rfc -qc)[1] || fail ))*[6])! || (( kbo || (lpo | fail;(ref;lpo)) || fail;(bounds -rfc -qc) || fail)*[7])! || (rev;((dp;edg[0.5]?;(sccs | (sc || sct || {ur?;( (matrix -dp -ur -dim 1 -ib 3 -ob 5 | matrix -dp -ur -dim 2 -ib 2 -ob 3 | matrix -dp -ur -dim 3 -ib 1 -ob 1 | matrix -dp -ur -dim 3 -ib 1 -ob 3) || (kbo -ur -af | lpo -ur -af) || ( arctic -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || ( arctic -bz -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || fail) }restore || fail;(bounds -dp -rfc -qc || bounds -dp -all -rfc -qc || bounds -rfc -qc)[1] || fail ))*[6])! || (( kbo || (lpo | fail;(ref;lpo)) || fail;(bounds -rfc -qc) || fail)*[7])!)))))! || ((if linear then cr -closed -m -1;closed -strongly 7 else fail) || (if left-linear then cr -closed -m -1;(closed -development) else fail))! || (if linear then (cr -dup;(( lpo -quasi || (matrix -dim 1 -ib 3 -ob 4 | matrix -dim 2 -ib 2 -ob 2 | matrix -dim 3 -ib 1 -ob 2 | arctic -dim 2 -ib 2 -ob 2) || (if duplicating then fail else (bounds -rt || bounds -rt -qc))[1] || poly -ib 2 -ob 4 -nl2 -heuristic 1 || fail )[5]*);shift -lstar);(rule_labeling | rule_labeling -left)?;decreasing else fail)! || (if left-linear then (cr -dup;(( lpo -quasi || (matrix -dim 1 -ib 3 -ob 4 | matrix -dim 2 -ib 2 -ob 2 | matrix -dim 3 -ib 1 -ob 2 | arctic -dim 2 -ib 2 -ob 2) || (if duplicating then fail else (bounds -rt || bounds -rt -qc))[1] || poly -ib 2 -ob 4 -nl2 -heuristic 1 || fail )[5]*);shift -lstar);(rule_labeling | rule_labeling -left)?;decreasing else fail)! || (cr -cpcs2 -cpcscert; ((( matrix -dim 1 -ib 3 -ob 5 | matrix -dim 2 -ib 2 -ob 3 | matrix -dim 3 -ib 1 -ob 1 | matrix -dim 3 -ib 1 -ob 3 | fail)[2]*);((dp;edg[0.5]?;(sccs | (sc || sct || {ur?;( (matrix -dp -ur -dim 1 -ib 3 -ob 5 | matrix -dp -ur -dim 2 -ib 2 -ob 3 | matrix -dp -ur -dim 3 -ib 1 -ob 1 | matrix -dp -ur -dim 3 -ib 1 -ob 3) || (kbo -ur -af | lpo -ur -af) || ( arctic -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || ( arctic -bz -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || fail) }restore || fail;(bounds -dp -rfc -qc || bounds -dp -all -rfc -qc || bounds -rfc -qc)[1] || fail ))*[6])! || (( kbo || (lpo | fail;(ref;lpo)) || fail;(bounds -rfc -qc) || fail)*[7])! || (rev;((dp;edg[0.5]?;(sccs | (sc || sct || {ur?;( (matrix -dp -ur -dim 1 -ib 3 -ob 5 | matrix -dp -ur -dim 2 -ib 2 -ob 3 | matrix -dp -ur -dim 3 -ib 1 -ob 1 | matrix -dp -ur -dim 3 -ib 1 -ob 3) || (kbo -ur -af | lpo -ur -af) || ( arctic -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || ( arctic -bz -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || fail) }restore || fail;(bounds -dp -rfc -qc || bounds -dp -all -rfc -qc || bounds -rfc -qc)[1] || fail ))*[6])! || (( kbo || (lpo | fail;(ref;lpo)) || fail;(bounds -rfc -qc) || fail)*[7])!)))))!)[15]?)3*! ))[54]