NO Non-Confluence Proof

Non-Confluence Proof

by ACP

Input

The rewrite relation of the following TRS is considered.

sq(0(x)) p(s(p(s(p(p(p(p(s(s(s(s(0(p(s(p(s(x)))))))))))))))))
sq(s(x)) s(p(s(p(s(p(p(s(s(twice(p(s(p(s(p(p(p(s(s(s(sq(p(p(p(p(p(p(s(s(s(s(s(s(x)))))))))))))))))))))))))))))))))
twice(0(x)) p(p(p(p(s(s(p(s(s(s(0(p(p(p(s(s(s(p(p(s(s(p(s(p(s(p(s(x)))))))))))))))))))))))))))
twice(s(x)) p(p(s(s(s(p(p(s(s(s(twice(p(s(p(s(x)))))))))))))))
p(p(s(x))) p(x)
p(s(x)) x
p(0(x)) 0(s(s(s(s(s(s(s(s(s(s(s(x))))))))))))
0(x) x

Proof

1 Non-Joinable Fork

The system is not confluent due to the following forking derivations.

t0 = sq(0(c_1))
ε p(s(p(s(p(p(p(p(s(s(s(s(0(p(s(p(s(c_1)))))))))))))))))
ε p(s(p(p(p(p(s(s(s(s(0(p(s(p(s(c_1)))))))))))))))
ε p(p(p(p(s(s(s(s(0(p(s(p(s(c_1)))))))))))))
1.1.1.1.1.1.1.1.1 p(p(p(p(s(s(s(s(0(p(s(c_1)))))))))))
= t4

t0 = sq(0(c_1))
1 sq(c_1)
= t1

The two resulting terms cannot be joined for the following reason:

Tool configuration

ACP