YES TRS: fst(0(),Z) -> nil() fst(s(X),cons(Y,Z)) -> cons(Y,n__fst(activate(X),activate(Z))) from(X) -> cons(X,n__from(n__s(X))) add(0(),X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) len(nil()) -> 0() len(cons(X,Z)) -> s(n__len(activate(Z))) fst(X1,X2) -> n__fst(X1,X2) from(X) -> n__from(X) s(X) -> n__s(X) add(X1,X2) -> n__add(X1,X2) len(X) -> n__len(X) activate(n__fst(X1,X2)) -> fst(activate(X1),activate(X2)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(X) activate(n__add(X1,X2)) -> add(activate(X1),activate(X2)) activate(n__len(X)) -> len(activate(X)) activate(X) -> X linear polynomial interpretations on N: fst_A(x1,x2) = x1 + x2 + 3 fst#_A(x1,x2) = x1 + x2 + 4 0_A = 1 0#_A = 1 nil_A = 0 nil#_A = 0 s_A(x1) = x1 s#_A(x1) = 1 cons_A(x1,x2) = x2 cons#_A(x1,x2) = 3 n__fst_A(x1,x2) = x1 + x2 + 3 n__fst#_A(x1,x2) = 1 activate_A(x1) = x1 activate#_A(x1) = x1 + 2 from_A(x1) = x1 + 3 from#_A(x1) = 4 n__from_A(x1) = x1 + 3 n__from#_A(x1) = 3 n__s_A(x1) = x1 n__s#_A(x1) = 0 add_A(x1,x2) = x1 + x2 + 2 add#_A(x1,x2) = x1 + x2 + 4 n__add_A(x1,x2) = x1 + x2 + 2 n__add#_A(x1,x2) = 3 len_A(x1) = x1 + 2 len#_A(x1) = x1 + 3 n__len_A(x1) = x1 + 2 n__len#_A(x1) = 1 precedence: 0 = n__from = n__add > nil = activate > fst = from = add > cons = n__fst = n__s > n__len > len > s