KBO Orientability

Harald Zankl[‡] Nao Hirokawa[†] Aart Middeldorp[‡]

- † Japan Advanced Institute of Science and Technology
 - † University of Innsbruck

Term Rewriting

DEFINITION

- pair of terms $l \to r$ is rewrite rule if $l \notin \mathcal{V} \land \mathcal{V}$ ar $(r) \subseteq \mathcal{V}$ ar(l)
- term rewrite system (TRS) is set of rewrite rules
- (rewrite relation) $s \to_{\mathcal{R}} t$ if $\exists l \to r \in \mathcal{R}$, context C, substitution σ . $s = C[l\sigma] \land t = C[r\sigma]$

Example

TRS \mathcal{R}

$$\begin{array}{ll} x+0 \to x & x+\mathsf{s}(y) \to \mathsf{s}(x+y) \\ x\times 0 \to 0 & x\times \mathsf{s}(y) \to x\times y + x \end{array}$$

rewriting

$$\begin{split} \mathsf{s}(0) \times \mathsf{s}(0) &\to_{\mathcal{R}} \mathsf{s}(0) \times \mathsf{0} + \mathsf{s}(0) \\ &\to_{\mathcal{R}} \mathsf{0} + \mathsf{s}(0) \\ &\to_{\mathcal{R}} \mathsf{s}(0+\mathsf{0}) \\ &\to_{\mathcal{R}} \mathsf{s}(0) \end{split}$$

Termination

DEFINITION

TRS \mathcal{R} is terminating if there is no infinite rewrite sequence $t_1 \to_{\mathcal{R}} t_2 \to_{\mathcal{R}} \cdots$

QUESTION

how to prove termination?

- Knuth-Bendix order (KBO)
 - introduced by Knuth and Bendix, 1970
 - best studied termination methods
 - great success in theorem provers (Waldmeister, Vampire, ...)

Knuth-Bendix Orders

DEFINITION

- ullet precedence > is proper order on function symbols ${\cal F}$
- weight function (w, w_0) is pair in $\mathbb{R}_{\geqslant 0}^{\mathcal{F}} \times \mathbb{R}_{\geqslant 0}$
- weight of term t is

$$w(t) = \begin{cases} w_0 & \text{if } t \in \mathcal{V} \\ w(f) + w(t_1) + \dots + w(t_n) & \text{if } t = f(t_1, \dots, t_n) \end{cases}$$

• weight function (w, w_0) is admissible for precedence > if

$$w(f) > 0$$
 or $f \geqslant g$

for all unary functions f and all functions g

DEFINITION

Knuth-Bendix order $>_{\text{kbo}}$ on terms $\mathcal{T}(\mathcal{F}, \mathcal{V})$: $s>_{\text{kbo}} t$ if $|s|_x \geqslant |t|_x$ for all $x \in \mathcal{V}$ and either

- w(s) > w(t), or
- w(s) = w(t) and
 - $s=f^n(t)$ and $t\in\mathcal{V}$ for some unary f and $n\geqslant 1$; or
 - $s=f(s_1,\ldots,s_{i-1},s_i,\ldots,s_n)$, $t=f(s_1,\ldots,s_{i-1},t_i,\ldots,t_n)$, and $s_i>_{\rm kbo}t_i$; or
 - \bullet $s=f(s_1,\ldots,s_n)$, $t=g(t_1,\ldots,t_m)$, and f>g

DEFINITION

let $X \subseteq \mathbb{R}_{\geqslant 0}$. TRS \mathcal{R} is KBO_X terminating if

- ∃ precedence >
- \exists admissible weight function $(w, w_0) \in X^{\mathcal{F}} \times X$ such that $l >_{\text{kbo}} r$ for all $l \to r \in \mathcal{R}$

THEOREM Knuth and Bendix, 1970 TRS is terminating if it is $KBO_{\mathbb{N}}$ terminating

THEOREM Knuth and Bendix, 1970

TRS is terminating if it is KBO_N terminating

THEOREM Dershowitz, 1979

TRS is terminating if it is $KBO_{\mathbb{R}_{>0}}$ terminating

THEOREM Dick, Kalmus, and Martin, 1990

 $KBO_{\mathbb{R}_{\geqslant 0}}$ termination is decidable

THEOREM Korovin and Voronkov, 2001, 2003

- TRS is $KBO_{\mathbb{N}}$ terminating \iff it is $KBO_{\mathbb{R}_{>0}}$ terminating
- $KBO_{\mathbb{R}_{\geq 0}}$ termination is decidable within polynomial time

THEOREM Zankl and Middeldorp, 2007

 $\mathit{KBO}_{\{0,1,\ldots,B\}}$ termination $(B\in\mathbb{N})$ can reduce to SAT and PBC

Main Result

Theorem

 \mathcal{R} is KBO $_{\mathbb{N}}$ terminating $\iff \mathcal{R}$ is KBO $_{\{0,1,\ldots,B\}}$ terminating where, $B=n^{2^{n+1}}$

COROLLARY

Zankl and Middeldorp's SAT and PBC encodings are complete for this B

Summary

$$\begin{array}{c} \text{let } \mathcal{R} \text{ be TRS of size } n = \sum_{l \rightarrow r \in \mathcal{R}} (|l| + |r|) \text{ and } \underline{B} = n^{2^{n+1}} \\ \\ \mathcal{R} \text{ is KBO}_{\mathbb{R}_{\geqslant 0}} \text{ terminating} \\ \\ \iff \mathcal{R} \text{ is KBO}_{\mathbb{N}} \text{ terminating} \\ \\ \iff \mathcal{R} \text{ is KBO}_{\{0,1,\ldots,B\}} \text{ terminating} \end{array} \qquad \begin{array}{c} \text{Korovin and Voronkov} \\ \\ \text{this talk} \end{array}$$

theoretical interest of decidability issue is more or less closed

FUTURE WORK

find optimal B