KBO Orientability

Harald Zankl ${ }^{\ddagger} \quad$ Nao Hirokawa ${ }^{\dagger}$ Aart Middeldorp ${ }^{\dagger}$

\dagger Japan Advanced Institute of Science and Technology
University of Innsbruck

Term Rewriting

DEFINITION

- pair of terms $l \rightarrow r$ is rewrite rule if $l \notin \mathcal{V} \wedge \mathcal{V} \operatorname{ar}(r) \subseteq \mathcal{V} \operatorname{Var}(l)$
- term rewrite system (TRS) is set of rewrite rules
- (rewrite relation) $s \rightarrow_{\mathcal{R}} t$ if $\exists l \rightarrow r \in \mathcal{R}$, context C, substitution σ. $s=C[l \sigma] \wedge t=C[r \sigma]$

Example
TRS \mathcal{R}

$$
\begin{array}{ll}
x+0 \rightarrow x & x+\mathbf{s}(y) \rightarrow \mathbf{s}(x+y) \\
x \times 0 \rightarrow 0 & x \times \mathbf{s}(y) \rightarrow x \times y+x
\end{array}
$$

rewriting

$$
\begin{aligned}
\mathrm{s}(0) \times \mathrm{s}(0) & \rightarrow \mathcal{R} \mathrm{s}(0) \times 0+\mathrm{s}(0) \\
& \rightarrow_{\mathcal{R}} 0+\mathrm{s}(0) \\
& \rightarrow_{\mathcal{R}} \mathrm{s}(0+0) \\
& \rightarrow_{\mathcal{R}} \mathrm{s}(0) \quad \text { terminated } \\
& 2 / 9
\end{aligned}
$$

Termination

DEFINITION
TRS \mathcal{R} is terminating if there is no infinite rewrite sequence $t_{1} \rightarrow_{\mathcal{R}} t_{2} \rightarrow_{\mathcal{R}} \cdots$

QUESTION

how to prove termination?

Knuth-Bendix order (KBO)

- introduced by Knuth and Bendix, 1970
- best studied termination methods
- great success in theorem provers
(Waldmeister, Vampire, ...)

Knuth-Bendix Orders

$\underline{\text { DEFINITION }}$

- precedence $>$ is proper order on function symbols \mathcal{F}
- weight function $\left(w, w_{0}\right)$ is pair in $\mathbb{R}_{\geqslant 0}{ }^{\mathcal{F}} \times \mathbb{R}_{\geqslant 0}$
- weight of term t is

$$
w(t)= \begin{cases}w_{0} & \text { if } t \in \mathcal{V} \\ w(f)+w\left(t_{1}\right)+\cdots+w\left(t_{n}\right) & \text { if } t=f\left(t_{1}, \ldots, t_{n}\right)\end{cases}
$$

- weight function $\left(w, w_{0}\right)$ is admissible for precedence $>$ if

$$
w(f)>0 \quad \text { or } \quad f \geqslant g
$$

for all unary functions f and all functions g

DEFINITION

Knuth-Bendix order $>_{\text {kbo }}$ on terms $\mathcal{T}(\mathcal{F}, \mathcal{V})$:
$s>_{\text {kbo }} t$ if $|s|_{x} \geqslant|t|_{x}$ for all $x \in \mathcal{V}$ and either

- $w(s)>w(t)$, or
- $w(s)=w(t)$ and
- $s=f^{n}(t)$ and $t \in \mathcal{V}$ for some unary f and $n \geqslant 1$; or
- $s=f\left(s_{1}, \ldots, s_{i-1}, s_{i}, \ldots, s_{n}\right), t=f\left(s_{1}, \ldots, s_{i-1}, t_{i}, \ldots, t_{n}\right)$, and $s_{i}>_{\text {kbo }} t_{i}$; or
- $s=f\left(s_{1}, \ldots, s_{n}\right), t=g\left(t_{1}, \ldots, t_{m}\right)$, and $f>g$

DEFINITION
let $X \subseteq \mathbb{R}_{\geqslant 0}$. TRS \mathcal{R} is KBO_{X} terminating if

- \exists precedence $>$
- \exists admissible weight function $\left(w, w_{0}\right) \in X^{\mathcal{F}} \times X$
such that $l>_{\text {kbo }} r$ for all $l \rightarrow r \in \mathcal{R}$

Theorem Knuth and Bendix, 1970
$T R S$ is terminating if it is $K B O_{\mathbb{N}}$ terminating

Theorem Knuth and Bendix, 1970
$T R S$ is terminating if it is $K B O_{\mathbb{N}}$ terminating

Theorem Dershowitz, 1979
$T R S$ is terminating if it is $K B O_{\mathbb{R} \geqslant 0}$ terminating

Theorem Dick, Kalmus, and Martin, 1990
$K B O_{\mathbb{R} \geqslant 0}$ termination is decidable

Theorem Korovin and Voronkov, 2001, 2003

- $T R S$ is $K B O_{\mathbb{N}}$ terminating \Longleftrightarrow it is $K B O_{\mathbb{R}_{\geqslant 0}}$ terminating
- $K B O_{\mathbb{R}_{\geqslant 0}}$ termination is decidable within polynomial time

Theorem Zankl and Middeldorp, 2007
$K B O_{\{0,1, \ldots, B\}}$ termination $(B \in \mathbb{N})$ can reduce to SAT and PBC

Main Result

Theorem
\mathcal{R} is $K B O_{\mathbb{N}}$ terminating $\Longleftrightarrow \mathcal{R}$ is $K B O_{\{0,1, \ldots, B\}}$ terminating where, $B=n^{2^{n+1}}$

Corollary
Zankl and Middeldorp's SAT and PBC encodings are complete for this B

Summary

let \mathcal{R} be TRS of size $n=\sum_{l \rightarrow r \in \mathcal{R}}(|l|+|r|)$ and $B=n^{2^{n+1}}$
\mathcal{R} is $\mathrm{KBO}_{\mathbb{R} \geqslant 0}$ terminating
$\Longleftrightarrow \mathcal{R}$ is $\mathrm{KBO}_{\mathbb{N}}$ terminating
$\Longleftrightarrow \mathcal{R}$ is $\mathrm{KBO}_{\{0,1, \ldots, B\}}$ terminating

Korovin and Voronkov this talk

- theoretical interest of decidability issue is more or less closed

FUTURE WORK

find optimal B

