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SUMMARY Fingerprints are useful for biometric purposes
because of their well known properties of distinctiveness and per-
sistence over time. However, owing to skin conditions or incorrect
finger pressure, original fingerprint images always contain noise.
Especially, some of them contain useless components, which are
often mistaken for the terminations that are an essential minutia
of a fingerprint. Mathematical Morphology (MM) is a powerful
tool in image processing. In this paper, we propose a linear time
algorithm to eliminate impulsive noise and useless components,
which employs generalized and ordinary morphological operators
based on Euclidean distance transform. There are two contri-
butions. The first is the simple and efficient MM method to
eliminate impulsive noise, which can be restricted to a minimum
number of pixels. We know the performance of MM is heavily
dependent on structuring elements (SEs), but finding an optimal
SE is a difficult and nontrivial task. So the second contribution is
providing an automatic approach without any experiential para-
meter for choosing appropriate SEs to eliminate useless compo-
nents. We have developed a novel algorithm for the binarization
of fingerprint images [1]. The information of distance transform
values can be obtained directly from the binarization phase. The
results show that using this method on fingerprint images with
impulsive noise and useless components is faster than existing de-
noising methods and achieves better quality than earlier methods.
key words: impulsive noise, useless components, mathematical
morphology (MM), Euclidean distance transform, integral image

1. Introduction

Automatic fingerprint identification systems (AFISs)
provide widely used biometric techniques for personal
identification. Fingerprints have the properties of dis-
tinctiveness or individuality, and the fingerprints of a
particular person remain almost the same (persistence)
over time. These properties make fingerprints suitable
for biometric uses. AFISs are usually based on minu-
tiae (feature points) matching. Minutiae are local dis-
continuities of two types, terminations and bifurcations
of the ridge flow patterns that constitute a fingerprint.
These two types of minutiae are considered by the Fed-
eral Bureau of Investigation for identification purposes.
A detailed discussion on all the aspects of personal iden-
tification using fingerprints can be found in Maltoni et
al. [2]. AFIS based on minutiae matching involves dif-
ferent stages (see Figure 1 for an illustration):
1. fingerprint image acquisition;
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Fig. 1 A flowchart showing different phases of fingerprint
analysis. The highlighted module shows the area of our work.

2. preprocessing of the fingerprint image;
3. feature extraction (e.g. minutiae) from the image;
4. matching of fingerprint images for identification.

The performance of fingerprint recognition relies
heavily on the quality of the input fingerprint image.
However, in practice, due to skin conditions (e.g., wet or
dry), sensor noise, incorrect finger pressure, and inher-
ently low-quality fingerprints, a significant percentage
of fingerprint images contain a lot of noise (see Figure
5(a)). Noises in fingerprint images fall into two cate-
gories: impulsive noise (“salt and pepper” noise) and
useless components (see Definition 1). Note that use-
less components are often mistaken for the terminations
that are an essential minutia of a fingerprint.

Several techniques have been developed for elimi-
nating impulsive noise. Ratha, Chen, and Jain [3] im-
plement a morphological opening in which the struc-
turing element is a small box oriented according to the
local ridge orientation. Wahab, Chin, and Tan [4] cor-
rect the binary image at locations where orientation es-
timates deviate from their neighboring estimates. This
correction is performed by substituting the noisy pixels
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according to certain oriented templates. Ikeda et al.
[5] use morphological operators to enhance ridges and
valleys in the fingerprint binary image. Since the first
two methods consider the orientation, a fine selection of
the directional filters is necessary. Although the third
method employs an isotropic constructing element and
as a result keeps the original shape of the fingerprint,
the impulsive noise cannot be completely eliminated.
However, the time complexity of these three is at least
O(N2×d2) for an image with N×N pixel entries and a
filter whose radius is d. It is time consuming. In this pa-
per, we first propose a simple and linear time complex-
ity method, which employs generalized morphological
operators (GMO) [16] based on distance transform and
integral image [18], to eliminate the impulsive noise.

Up to now, there has been little in the literature
with regard to eliminating the useless components. In
order to do so, the structuring element chosen must
have a good fit. There are three existing categories of
methods for choosing the optimal or appropriate SEs.
S. Fejes and F. Vajda’s [6]–[8] algorithm employs the
least mean square. It needs a reference image, which
means this method will first do a training phase. But
during fingerprint recognition process, it is unlikely that
system could provide a reference image. Anelli, Lon-
caric and Dhawan’s [9]–[11] algorithm uses a genetic al-
gorithm (GA) to choose an optimal SE. Although GA
really can find the optimal results with correct crite-
ria , it is a time-consuming algorithm, and fingerprint
recognition is a real time application. GA cannot sat-
isfy this realistic restriction. Takuo Kikuchi and Shuta
Murakami’s [12] algorithm is based on the standard
deviation of a linear SE with directionality. In their
method, the length of the linear SE is determined by
experience. In contrast, we define a condition for elim-
inating useless components based on the fact that the
width of useless component must be less than the av-
erage width of finger ridges. We show how distance
transform can be used as a measure for width and then
design an algorithm to efficiently determine the size of
the SE.

The rest of this paper is organized as follows. In
Section 2, we briefly review a linear time Euclidean
distance transform algorithm and the concept of gen-
eralized morphological operators. Section 3 describes a
new way to represent structuring elements using Euclid-
ean distance transform. Section 4 contains a discussion
on a linear time generalized morphological operation
on impulsive noise elimination. Section 5 discusses the
algorithm for automatically eliminating useless compo-
nents. Finally, we present our conclusions in Section
6.

2. Euclidean Distance Transform and General-
ized Morphological Operators

2.1 A Linear-time Euclidean Distance Transform Al-
gorithm

A two-dimensional binary image I of N × N pixels is
a matrix of size N ×N in which the entries are 0 or 1.
The pixel in a row i and column j is associated with
the Cartesian co-ordinate (i, j). For a given distance
function, the Euclidean distance transform of a binary
image I is defined in [13] as an assignment to each back-
ground pixel (i, j) a value equal to the Euclidean dis-
tance between (i, j) and the closest feature pixel, i.e., a
pixel having a value 1. Breu et al. [13] proposed an op-
timal O(N×N) algorithm for computing the Euclidean
distance transform as defined using Voronoi diagrams.
Constructing and querying the Voronoi diagrams for
each pixel (i, j) take time θ(N2 log N). But, the authors
use the fact that both the sites and query points of the
Voronoi diagrams are subsets of a two-dimensional pixel
array to bring down the complexity to θ(N2). In [14],
Hirata and Katoh define Euclidean distance transform
in an almost same way as the assignment to each 1 pixel
a value equal to the Euclidean distance to the closest 0
pixel. The authors use a bi-directional scan along rows
and columns of the matrix to find the closest 0. Then,
they use an envelope of parabolas whose parameters
are obtained from the values of the bi-directional scan.
They use the fact that two such parabolas can inter-
sect in at most one point to show that each parabola
can occur in the lower envelope at most once to com-
pute the Euclidean distance transform in optimal θ(N2)
time. In keeping with the above, we define two types
of Euclidean distance transform values. The first one,
DT1,0, is the same as described above. The second one
is DT0,1, which is the value assigned to a 0 pixel equal
to the Euclidean distance to the nearest 1 pixel. Using
the results given in [14], we have the following fact:

Fact 1: Both DT1,0 and DT0,1 can be computed in
optimal time O(N2) for an N ×N binary image. Also,
the values of both DT1,0 and DT0,1 are greater than or
equal to 1.

2.2 Generalized Morphological Operators (GMO)

In mathematical morphology, signal transformations
are called morphological filters, which are nonlinear op-
erators that locally modify the geometrical features of
signals. More details can be found in Serra and Soille
[15].

Let B ⊂ Z2 be a simple compact set of small size
called structuring element. B̆ is the reflection of B. F
denotes a set of foreground pixels (black pixels) and
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F c denotes the background (white pixels). A morpho-
logical operation is a processing of the intersection of
the SEs with F (or F c). Therefore, when a large mor-
phological kernel is used, the ordinary morphological
operators have excessive operation (e.g., erosion, dila-
tion).

For example, the morphological dilation of F by B
can be generalized by combining the size of the intersec-
tion into the dilation process. In that sense, the dilation
of F would be done if and only if the intersection be-
tween F and the shifted B̆ is big enough. The obtained
advantage of the generalized dilation is avoiding exces-
sive dilation caused by small intersections. That is, the
mass of an intersection should be big enough to cause
a change.

The generalized dilation of F by B with strict-
ness s is defined by:

F
s⊕ B = {x : #(F

⋂
B̆) ≥ s}; s ∈ [1,min(#F, #B)]

where # denotes the cardinality of a set.
Ordinary dilation is obtained as a special case of

generalized dilation when s = 1.
The generalized erosion of F by B with strict-

ness s is defined by:

F
sª B = {x : #(F c

⋂
B) < s}; s ∈ [1, #B]

where it is assumed that #F < ∞.
Similarly, the ordinary erosion is also obtained as

a special case of generalized erosion when s = 1.
The properties of generalized morphological oper-

ators can be found in [16].
It is important to note that, using the generalized

operators in existing algorithms with strictness greater
than one may increase the resistivity of the algorithms
to noise and small intrusions.

3. Description of Structuring Elements using
Euclidean Distance Transform

Symmetrical and circular SEs play a fairly central role
in mathematical morphology in the continuous plane,
since they provide an isotropic treatment of the image.
In the continuous domain, we use Bd to denote a cir-
cular SE whose radius is d, (see Figure 2). It is defined
as:

Bd = {b : d(b, 0) ≤ d} (1)

Where d(b, F ) is the distance from SE center point
b(i, j) to the nearest pixel belonging to F . Then, ero-
sion and dilation by Bd can also be expressed as the
threshold of a distance value.

d

Fig. 2 Structuring element defined by distance value in con-
tinuous domain.

1

1

2

(a) 3× 3 SE: d =
√

2

1

(b) Cross SE: d = 1

Fig. 3 Use of Euclidean distance value to describe “circular”
SEs.

F ªB =
⋂{F − b : d(b, F ) ≤ d}

F ⊕B =
⋃{F + b : d(b, F ) ≤ d}

(2)

The above equations show that morphological op-
erators only deal with the pixels whose distance value
is not greater than d.

However, for digital images, circular SE are rarely
used because there is no “real” circular SE on a dis-
crete lattice. The straightforward method to describe
a SE is to pick up all pixels around the center point
b(i, j). However, this method has a drawback; when-
ever the center moves to the position b(i′, j′), we have
to update all other pixels in B. The process is naive
and time consuming, and induce time complexity of the
algorithm to O(N2×d2) for an image of size N×N and
a SE of radius d. Fortunately, we can employ Euclidean
distance transform value to easily describe a “circular”
SE in the discrete domain and further reduce time com-
plexity of algorithm [17]. 3 × 3 SEs and cross SEs are
much in use. In the following discussion, they will be
used as examples to explain this principle, (see Figure
3).

In the discrete space, we assume each pixel is a unit
square. For a 3×3 SE, the distance between a horizon-
tal (or vertical) neighbor and the center is 1. Similarly,
the diagonal neighbor is at distance

√
12 + 12 =

√
2

from the center. This means every pixel whose dis-
tance from point b(i, j) lies in [1,

√
2] will be covered

by a 3 × 3 SE centering on the point b(i, j). Thus, we
can easily denote 3 × 3 SE by Bd=

√
2 (Figure.3 (a)).

In a corresponding way, since the cross SE only has
horizontal and vertical neighbors, it can be denoted by
Bd=1 (Figure.3 (b)). Next, the “circular” SEs denoted
by Euclidean distance transform value are given.
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SE with 5 pixels, Bd=1.
SE with 9 pixels, Bd=

√
2.

SE with 13 pixels, Bd=2.
SE with 21 pixels, Bd=

√
5.

SE with 25 pixels, Bd=
√

8.
SE with 29 pixels, Bd=3.
...

...

(3)

4. Eliminating Impulsive Noise using Linear
Time GMO

In practice, due to factors like skin conditions (e.g. wet
or dry), sensor noise, or incorrect finger pressure, finger-
print images obtained from sensors often contain a lot
of noise, which heavily affects the accuracy of further
processing. The noises of fingerprint image have many
shapes and directions. Thus, a fine selection of the di-
rectional ordinary morphological operators is required;
a large morphological kernel may be also required. In
such cases, the effects of denoising may damage the ex-
pected results due to extreme strictness of the ordinary
morphological operators. So, we employ GMO in our
system.

4.1 Advantages of GMO using Distance Transform

First, the GMOs have controllable strictness, and thus
excessive erosion and dilation can be prevented. On
the other hand, by controlling the strictness of a GMO,
the GMO can adapt itself to the orientation and shape
of fingerprint without adopting many directional oper-
ators.

Second, according to the properties of morpholog-
ical operators, only the edge of a set F needs to be
considered for computing these morphological opera-
tions. More accurately, equation 2 can be modified as
follows,

F ªB = F
⋂

(∂(F )ªB)

F ⊕B = F
⋃

(∂(F )⊕B)
(4)

where ∂(F ) is the edge of F , that is the set of pixels
of F with at least a direct neighbor not belonging to
F and the distance transform value not greater than
d. Assume l is the length of the contour of F (l is the
cardinality of the set ∂(F )), then the computational
complexity is reduced from O(N2 × d2) to O(l × d2)
for any SE of radius d. If the strictness of the GMOs
is greater than 1, operators should count the number
of intersected pixels between B and F c (or B̆ and F ).
Naive methods are dependent on the size of SEs. So,
O(l × d2) + N2 time is needed to check if the pixels
belong to ∂(F ) by distance transform values.

Note that we usually use rectangular SE to do de-
noising (e.g. 3× 3 SE, 2× 3 SE, or 3× 2 SE, etc.). Our

p(x, y)

ii(x’, y’)

ii(x’, y’’)

ii(x’’, y’)

ii(x’’, y’’)

Fig. 4 Count inverse pixels of center using integral image.

method can further reduce O(l × d2) to linear time by
using integral image method.

4.2 Reducing Time Complexity by Integral Image

Integral Image was first used by Viola and Jones [18].
It is very similar to the summed area table used in
computer graphics for text mapping [19]. The integral
image can be computed from an image using a few oper-
ations per pixel. Once computed, any rectangular SEs
can be computed at any scale or location in constant
time.

The integral image at location (x, y) contains the
sum of the pixels above and to the left of (x, y), inclu-
sive:

ii(x, y) =
∑

x′≤x,y′≤y

i(x′, y′), (5)

where ii(x, y) is the integral image and i(x, y) is the
original image. Using the following pair of recurrences:

s(x, y) = s(x, y − 1) + i(x, y)
ii(x, y) = ii(x− 1, y) + s(x, y)

where s(x, y) is the cumulative row sum, the integral
image can be computed in one pass over the original
image. Then any rectangle sum can be computed in
four array references.

Owing to GMO’s strictness s > 1, during morpho-
logical operations, operators should know the number
of intersected pixels between B and F c (or B̆ and F ).
Our strategy is to first represent the original binary im-
age using an integral image (see Figure 4). When SE
scans the point p(x, y), we do the following operation.

n = ii(x′, y′)− ii(x′′, y′)− ii(x′, y′′) + ii(x′′, y′′)

where n is the number of background pixels in SE. For
erosion, the state of the point p(x, y) is converted if and
only if n ≥ s. It is similar to dilation.

From above, we get the following conclusion:
{

O(N2) if rectangular SEs were used.
O(N2 × d) if isotropic SEs were used.
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In our method we employ rectangular SEs. So, the
complexity of eliminating impulsive noise is linear.

4.3 Algorithm and Results

As the impulsive noise is fairly small and thin (specif-
ically, one or two pixels wide in our case). And ac-
cording to the property of GMO [16], strictness s must
lie in interval [2, b#B/2c]. For a small SE, the inte-
ger midpoint b 2+b#B/2c

2 c of the interval is reasonable
strictness value. Therefore, a square SE of 3× 3 pixels
(corresponding to d =

√
2) with strictness of value 3 is

used. The processing steps of this phase are as follows:

Input: A binary fingerprint image I of size N ×N
with impulsive noise.

Output: A binary image without impulsive noise.
1. Implement Euclidean distance transform for fore-

ground pixels.

2. Represent binary image by integral image.

3. Pick up all pixels whose distance value are 1 or
1.414 and do generalized opening with strictness 3
using integral image on these pixels.

It is known computing times of both Euclidean dis-
tance transform and integral image are linear. In step
3, finding available pixels is exactly N2. As analyzed in
previous subsection, generalized opening using integral
image can be done in O(l) time. Therefore, the total
time complexity is linear.

We tested 60 fingerprint images scanned from FU-
JITSU Fingerprint Sensor (model: FS-210u). These
images are of size 300× 300 and 500 dpi resolution. To
make comparisons with our result easier, we list the av-
erage real computing times of these images in Table 1
and show result images in Figure 5, where OMO and
GMO denote the methods based on ordinary and gen-
eralized morphological operators respectively. O. MO
(Ratha) and O. MO (Wahab) are approaches proposed
by Ratha et al [3] and Wahab et al [4] respectively.
OMO results show broken ridges due to its excessive
operation. For the Ratha, Chen, and Jain results [3],
most impulsive noise has been removed, but comput-
ing time is longer than others, due to the need of find-
ing the orientation of ridges. The Wahab, Chin, and
Tan results [4] are fast but a little noise remains since
only a few templates are employed. The approach of
Ikeda et al. [5] needs special hardware, so we could
not simulate it. Therefore, it is not shown in the Ta-
ble 1 or Figure 5. From their paper, however, we learn
that their approach does not remove the noise on the
boundary of fingerprint ridges. In our results, the im-
age is fairly clean and the fingerprint is less affected,
because a GMO with strictness can adapt itself to the
orientation and shape of fingerprint without adopting
many directional operators. Moreover, another advan-
tage of using GMO is that it needn’t apply a closing to

refill, as happens with the ordinary morphological op-
eration. Thus, with GMO it is possible to carry out less
operations. However, some useless components remain.

(a) Binary images with noise.

(b) Using OMOs.

(c) Using Ratha et al.’s approach.

(d) Using Wahab et al.’s approach.

(e) Using GMO by integral image.

Fig. 5 Results processed by various methods.
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Table 1 The average real computing time among four methods
to eliminate impulsive noise.

Method Time (sec)
OMO 0.059
GMO 0.087

O. MO (Ratha) 0.323
O. MO (Wahab) 0.088

5. Automatically Choosing Appropriately-Sized
Structuring Elements to Eliminate Useless
Components

Owing to skin condition (e.g., wet) or incorrect finger
pressure, some fingerprint images contain useless com-
ponents, which are often mistaken for the terminations
[17]; this makes it very difficult to correctly identify
the minutiae relationships of a person’s fingerprint im-
age. Thus, AFISs recognize the fingerprint with useless
components as a distinct print.

Definition 1: Useless Component is an object dis-
joint from other objects and whose largest width is less
than the mean width of fingerprint ridges.

In order to eliminate useless components, a good
SE is necessary. It is well known that the performance
of mathematical morphology is heavily dependent on
structuring elements (SEs). SEs have two aspects, size
and shape. For denoising applications, the size of an
SE is enlarged if membership values of the local area
are uniform. If membership values of a local region are
dispersed compared to other regions, minutiae may ex-
ist in that region. In this case, the SE must be small.
For enhancement or feature extraction, in which ex-
pected objects either are distributed in the background
with masses of other objects or are almost blended with
background, the shape of the SE should approximate
the target as closely as possible. So far, how to choose
an optimal or adaptive SE is still a hot topic.

There are several methods to find the optimal or
adaptive SEs, as described in the introduction. None
of them, however, start with a definition of appropriate
SEs. In contrast, we define a condition for eliminating
useless components based on the width of the useless
component, which must be less than the average width
of finger ridges. We also employ distance transform and
show how it can be used as a measure for width and
then present our algorithm to efficiently determine the
size of SEs.

5.1 Distance Transform and Ridge Width

Fingerprint images are characterized by almost equal
width ridges (a small part of the image is shown in
Figure 6). We will use this particular characteristic of
fingerprint to estimate the size of SEs. Measuring the
width for arbitrary shapes, however, is a difficult, non-
trivial task. For easy understanding, we first model this

Fig. 6 Magnified view of a part of the gray scale topology of a
fingerprint image.
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(a) 3D model of real ridge.
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(b) Distance transform 3D model.

Fig. 7 Diagrams of the 3D model.
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Fig. 8 Diagram for computing total distance value.

problem in continuous domain to show how distance
transform can be used to estimate the widths of ridges
and useless components in fingerprint images and then,
generalize it to the discrete domain.

5.1.1 Model in the Continuous Domain

The fingerprint ridge can be modelled in 3D domain as
shown in Figure 7(a). In the continuous domain, the
image is a continuous function f : (x, y) → IR. This
function increases along a direction perpendicular to
the ridge till it reaches the ridge top point, then de-
creases till it reaches the bottom. Since distance trans-
form values are used to approximate to gray scale in
our method, we obtain a distance transform 3D model
as shown in Figure 7(b).

After projecting distance transform 3D model onto
a plane, we get the planar diagram shown in Figure
8. We compute the total distance transform value of
this shape. Consider this special geometric object of
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width w and height h, with h À w. The medial axis
of this object is given by the dot line segment AB,
CD and EF . These dot line segments divide the geo-
metric shape into four regions such that the nearest
boundary line from any point in the region is deter-
mined. For instance, the region 1 has AD as its near-
est boundary line and region 3 has ÂB as its near-
est boundary arc. The total distance transform value
for region 1 is

∫ w
2

0

∫ h

0
(w

2 − y) dxdy = 1
8w2h. Simi-

larly, the total distance transform value for region 3 is∫ 3
2 π

π
2

∫ w
2

0
(w

2 − r)r drdθ = 1
48πw3. So, the total distance

transform value is:

φdt(w) =
1
8
w2h× 2 +

1
48

πw3 × 2

=
1
4
w2h +

1
24

πw3

=
1
4
w2(h +

1
6
πw) (6)

From this result, we can find some relationship be-
tween the distance transform value and the width of the
ridge. The length of the ridge, however, is fairly diffi-
cult to measure. Given this difficulty, it is reasonable
to use the average distance transform value to measure
ridge width. We first compute the area of the geometric
object. The areas for region 1 and 3 are 1

2w × h, and
π( 1

2w)2 × 1
2 respectively. So, the total area is:

φS(w) =
1
2
w × h× 2 + π(

1
2
w)2 × 1

2
× 2

= wh +
1
4
πw2

= w(h +
1
4
πw) (7)

The average distance transform value is equal to
total distance transform value (equation 6) divided by
area (equation 7). So,

Edt(w) =
1
4w2(h + 1

6πw)
w(h + 1

4πw)

=
1
4
w

h + 1
6πw

h + 1
4πw

<
1
4
w

≈ 1
4
w if h À w (8)

In the definition of a fingerprint 3D model, the
length is much greater than width. It implies that the
average distance transform value can be approximated
to one-fourth of the ridge width with a negligible error.
So four times the average distance transform value is
less than but almost equal to the average ridge width.
Useless components are objects disjoint from other ob-
jects and their largest width is less than the mean width

of the fingerprint ridges. This shows that the average
distance transform value can be used as a good measure
of estimating appropriate SEs. Our goal is to automat-
ically determine appropriate “circular” SEs for elimi-
nating useless components. The criteria is given by the
definition of useless component (see Definition 1). So,
more formally, we have the following lemma.

Lemma 1: When an isotropic SE satisfies the follow-
ing condition:

max(wuseless) ≤ 2d ≤ mean(wridge)

the useless components can be eliminated, but some
eroded ridges of the fingerprint shall remain.

PROOF. According to the erosion of ordinary mor-
phology, eroding an object can be found by intersect-
ing all translates of the object by the reflection of the
SE. As in our previous assumption, the diameter of
isotropic SE is not less than the maximum width of
the useless component. Then the object translated by
the reflection of SE is too far to intersect any other
translated object, i.e.

⋂{F − b : b∃B} = φ. Thus, the
useless components can be eliminated under such con-
dition. The diameter 2d, however, is not greater than
the mean width of fingerprint. That means some wider
portions, which are wider than SE, are not translated
so far away that they can intersect each other. So, some
of skeleton of the fingerprint remains.

5.1.2 Discrete Image and Distance Transform

In the discrete model, the co-ordinates are discrete
given from the pixel locations. So, the observations
from the previous subsection do not directly apply.
But, the crucial observation from the previous subsec-
tion is that the average distance transform value ap-
proximates to one-fourth the width of the ridge. Then,
an appropriate SE B can be obtained from the obser-
vation: Radius of the SE is less than but approximates
to half the average width of the ridges. This observa-
tion still works in the discrete domain. However, the
circular SE can move in an arbitrary direction in con-
tinuous domain. On the contrary, a “circular” SE only
can move straight (in a horizontal or vertical direction)
or diagonally with one step in the discrete domain. In
this case, the SE radius must be remeasured by the
same method as that used to measure ridge width in-
stead of the simple radius d. We also need to consider
the equal probability of moving straight or diagonally.
Thus, the radius r of SE is the mean of radiuses in these
two cases. Then, we have the following Definition:

Definition 2: An appropriate SE can be determined
when half the average width of ridges is located in the
corresponding interval.
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2 ≤ 2Edt(w) < 2.828, Bd=1.
2.828 ≤ 2Edt(w) < 3, Bd=

√
2.

3 ≤ 2Edt(w) < 3.606, Bd=2.
3.606 ≤ 2Edt(w) < 4, Bd=

√
5.

4 ≤ 2Edt(w) < 4.243, Bd=
√

8.
4.243 ≤ 2Edt(w) < 4.472, Bd=3.

...
...

(9)

where Edt(w) is the average distance transform value.
Bd is a circular SE with radius d.

With this definition in place, we are in a position
to design the algorithm in the next section.

5.2 Algorithm and Results

Our strategy is to take information from the original
image I with useless components and the eroded image
Ie by using the SE that satisfies Definition 2, in which
useless components are eliminated completely but fin-
gerprints cannot totally be deleted although they are
affected to some degree. Then, we integrate fingerprint
images I and Ie to restore the expected image Ir with-
out useless components. More precisely, we establish a
correspondence between the two images. The objects
which do not correspond with any information in the
eroded image Ie, are classified as useless components.
We then eliminate them. The remaining objects, which
have correspondences, are classified as fingerprint and
remain in the final output image Ir.

To take care of non uniform ridge width across
different image regions, we cut out sub-block of image
region and pick up the minimal average distance trans-
form value as criteria.

Input: A binary fingerprint image I of size N ×N
with useless components.

Output: A binary image without useless components.

1. Apply Euclidean distance transform on entire image;
2. do for all sub-block of the image I;

Compute average distance transform value
Edt(wi);

3. Pick up min(Edt(wi)), then select appropriate SE
B by definition 1;

4. Erode I by B;
5. Restore Ir by integrating I and Ie.

In this stage, we tested the same set of 27 im-
ages containing useless components as that used for
the previous denoising stage (see Section 4.3). We also
list the average real computing time in Table 2 and
show the SEs chosen by different methods in Figure
9. The final results processed by other methods are
almost the same, so Figure 10 only shows our result,
where DT, LMS, GA and SD denote the methods based
on distance transform, the least mean square, genetic
algorithm and standard deviation, respectively. Time

Table 2 The average real computing time among four methods
to eliminate useless components.

Method Time (sec) Error (num)
DT 0.063 0
LMS 0.34 1

GA 1.02 0
SD 0.374 0

(a) DT. (b) LMS.

(c) GA. (d) SD.

Fig. 9 SEs chosen by different methods.

means the CPU time. Error means the number of use-
less components not eliminated.

The results show that our method (DT) is much
faster than other three and works well. The least mean
square method needs more time due to its training
phase, and the chosen SE is not big enough, so that
a few useless components remain. The genetic algo-
rithm method takes the longest time, although it does
find the optimal SE. But this computing time is un-
acceptable for a real time system. The standard devi-
ation method can find an appropriate SE and run as
fast as LMS. However, the length of the linear SE is
determined manually, rather than automatically. Our
method avoids these drawbacks. It runs fast and pro-
duces satisfactory results. Thus, it can be used with
significant gains for fingerprint recognition in realtime
applications.

6. Conclusion

We have developed a combinatorial linear time algo-
rithm to eliminate impulsive noise and useless com-
ponents from fingerprint images using Euclidean dis-
tance transform. There are two contributions. The
first one represents binary fingerprint images and SEs
by integral image and distance transform values, and
reduce the time complexity of GMO from O(N2×d2) to
O(N2). The results are fairly clean and the fingerprint
shapes are less affected. The second contribution is an
algorithm for automatically determining an appropriate
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(a) Images with useless components.

(b) Eroded images.

(c) Images without useless components.

Fig. 10 Results of eliminating useless components.

“circular” SE to eliminate useless components from fin-
gerprint images exploiting the average fingerprint ridge
width. We used Euclidean distance transform as a mea-
sure of width for determining the radius of SEs. One
of the advantages of our method does not require para-
meters determined using experiences. Ordinary erosion
with an appropriate SE only needs O(l) + N2 time to
eliminate useless components. So, the entire algorithm
for fingerprint denoising is linear time. Note that, our
denoising algorithm using distance transform has an-
other distinct benefit. Please refer to Figure 1. The
modules which precede and follow denoising are bina-
rization and ridge extraction, respectively. We have de-
veloped a novel algorithm for binarization of fingerprint
images [1], in which information about distance trans-
form values can be obtained directly. And the ridge
is the skeleton of the thick binary structures obtained
from the binarization. Euclidean Distance Transform
can be effectively used to find the skeleton [20]. Thus
the same feature, distance transform, can be used for all
binarization, denoising and ridge extraction operation
which can save a lot of time in real applications.
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