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Summary 
Genetic Algorithms (GA) provide an attractive approach to 
solving the challenging problem of dynamic routing and 
wavelength assignment (RWA) in optical Wavelength Division 
Multiplexing (WDM) networks, because they usually achieve a 
significantly low blocking probability. Available GA-based 
dynamic RWA algorithms were designed mainly for WDM 
networks with a wavelength continuity constraint, and they 
cannot be applied directly to WDM networks with wavelength 
conversion capability. Furthermore, the available GA-based 
dynamic RWA algorithms suffer from the problem of requiring a 
very time consuming process to generate the first population of 
routes for a request, which may results in a significantly large 
delay in path setup. In this paper, we study the dynamic RWA 
problem in WDM networks with sparse wavelength conversion 
and propose a novel hybrid algorithm for it based on the 
combination of mobile agents technique and GA. By keeping a 
suitable number of mobile agents in the network to cooperatively 
explore the network states and continuously update the routing 
tables, the new hybrid algorithm can promptly determine the first 
population of routes for a new request based on the routing table 
of its source node, without requiring the time consuming process 
associated with current GA-based dynamic RWA algorithms. To 
achieve a good load balance in WDM networks with sparse 
wavelength conversion, we adopt in our hybrid algorithm a new 
reproduction scheme and a new fitness function that 
simultaneously takes into account the path length, number of free 
wavelengths, and wavelength conversion capability in route 
selection. Our new hybrid algorithm achieves a better load 
balance and results in a significantly lower blocking probability 
than does the Fixed-Alternate routing algorithm, both for optical 
networks with sparse and full-range wavelength converters and 
for optical networks with sparse and limited-range wavelength 
converters. This was verified by an extensive simulation study on 
the ns-2 network simulator and two typical network topologies. 
The ability to guarantee both a low blocking probability and a 
small setup delay makes the new hybrid dynamic RWA 
algorithm very attractive for current optical circuit switching 
networks and also for the next generation optical burst switching 
networks 
Key words: Mobile agents, genetic algorithm, dynamic routing 
and wavelength assignment, WDM networks, wavelength 
conversion 

1. Introduction 

Due to their huge bandwidth capacity, all-optical networks 
based on wavelength-division-multiplexing (WDM)  

 
technology hold great promise for serving as the backbone 
of the next generation Internet. In a wavelength-routed 
WDM network, data are routed in optical channels called 
lightpaths. To establish a lightpath without wavelength 
conversion, the same wavelength is required on all the 
links along the path; this is referred to the wavelength 
continuity constraint. The wavelength continuity 
constraint usually results in a high blocking probability in 
a wavelength-routed WDM network, and a common 
approach to alleviating this constraint is the adoption of 
wavelength converters.  

A WDM network is referred to as a network with full 
wavelength conversion if each node of the network has 
wavelength conversion capability [1]. On the other hand, a 
WDM network is referred to as a network with sparse 
wavelength conversion if only a sub-set of the network 
nodes has wavelength conversion capability. Furthermore, 
we say that a node is capable of full-range wavelength 
conversion if a wavelength channel on any input of the 
node can be converted to any wavelength channel on any 
output; a node is capable of limited-range wavelength 
conversion if a wavelength channel on any input of the 
node can only be converted to particular wavelength 
channels on any output [2]. Since the wavelength 
converters are expensive devices, it is practically 
infeasible to equip each network node with a wavelength 
converter. Therefore, current research efforts focus mainly 
on networks with sparse wavelength conversion [1],[2] 
[3],[4],[5],[6].  

In WDM networks, the Routing and Wavelength 
Assignment (RWA) problem concerns determining the 
routes and wavelengths to be used to establish lightpaths 
for connection requests. The RWA problem can be 
generally classified into two types: static and dynamic. In 
the former type, network topology and connection 
requests are given in advance, and the problem is to find a 
solution that minimizes network resources. It has been 
proved that the static RWA problem is NP-complete [7]. 
In the latter type, lightpaths are dynamically established 
upon the arrival of requests. If no route with free 
wavelength is available for a request, the request will be 
blocked. Generally, dynamic RWA algorithms aim to 
minimize the total blocking probability in the entire 
network. 
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The dynamic RWA problem is more challenging, and 
many approaches have been proposed for solving it 
[2],[7],[8],[9],[10]. In the fixed routing approach, a single 
fixed route is predetermined for each source-destination 
pair. Whenever a request arrives, its fixed route is 
attempted for wavelength assignment. In fixed alternate 
routing scheme, a set of routes is pre-computed for each 
source-destination pair and stored in an ordered list at the 
source node’s routing table. As a connection request 
arrives, one route is selected from the set of pre-computed 
routes. Fixed alternate routing always achieves better 
performance than fixed routing, and this approach actually 
shows a good trade-off between performance and control 
overhead [2]. In the adaptive routing approach, the route is 
computed based on the current network state at the arrival 
of a request, so it obtains the best performance [8],[9]. 
However, adaptive routing requires a relatively longer 
setup delay and a higher control overhead, including 
special support from control protocols to keep track of 
global network states.  

In a WDM network with sparse wavelength 
conversion, the dynamic RWA problem needs deliberate 
study to take full advantage of the gain from wavelength 
conversion [10],[11]. However, conventional dynamic 
routing algorithms may not work well in an environment 
with sparse or/ and full wavelength conversion [10]. GAs 
represent a promising approach to the RWA problem in 
WDM networks, and several GA-based RWA algorithms 
have been proposed [12],[13],[14],[15]. In [12],[13], N. 
Banerjee and S. Pandey et al. formulated both the static 
RWA and dynamic RWA problems as a multi-objective 
optimization problem and solved it using genetic 
algorithms. However, Banerjee and Pandey’s dynamic 
RWA algorithms require the re-routing of available 
connections and thus are not suitable for the high capacity 
WDM networks. Also, these authors did not consider 
wavelength conversion in their GA-based RWA 
algorithms. D.Bisbal et al. [14] proposed a novel GA-
based algorithm for dynamic RWA problem in WDM 
networks with wavelength continuity constraint, and 
V.T.Le et al. [15] improved Bisbal’s algorithm by using a 
more general cost function to achieve a better load balance. 
Bisbal’s algorithm does not require the re-routing of 
available connections and it can achieve a significantly 
low blocking probability. However, it can not be applied 
directly to the dynamic RWA problem for WDM networks 
with wavelength conversion capability, and it also requires 
a very time consuming process based on random searching 
to generate the first population of routes for a new request, 
which can result in a significantly large setup delay.  

In this paper, we focus on the dynamic RWA 
problem in WDM networks with sparse wavelength 
conversion, and propose a novel hybrid algorithm for 
solving it based on a combination of mobile agents 

technique [16],[17],[18],[19],[20] and genetic algorithm. 
The main contributions of our work are the following:  
• We extend Bisbal’s algorithm used for the dynamic 

RWA problem in WDM networks without 
wavelength conversion to solve the dynamic RWA 
problem in WDM networks with sparse wavelength 
conversion. 

• We propose a new reproduction scheme and a more 
general fitness function that simultaneously takes into 
account the path length, number of free wavelengths 
and wavelength conversion capability in route 
evaluation, such that a good load balance and low 
blocking probability can be achieved. We also 
propose some general formulas for determining the 
key parameters in the new fitness function. 

• We adopt a new scheme, based on the mobile agents 
technique [20], for generating the first population of 
routes for the hybrid algorithm. In this scheme a 
suitable number of mobile agents are kept in the 
network to cooperatively explore the network states 
and continuously update the routing tables, such that 
the first population routes for a new request can be 
determined promptly based on the routing table of its 
source node without requiring the very time 
consuming random searching process of old GA-
based dynamic RWA algorithms. 

Our proposed hybrid algorithm is applicable to the 
dynamic RWA problem for both WDM optical networks 
with sparse and full-range wavelength converters and 
those with sparse and limited-range wavelength converters. 
Since the promising fixed-alternate routing algorithm 
shows a good trade-off between performance and control 
overhead, and a fixed-alternate algorithm with a small 
number of alternate routes can asymptotically approach 
the performance of an adaptive routing algorithm in terms 
of blocking probability [2], we use the Fixed-Alternate 
algorithm in this work for comparison with our hybrid 
algorithm. Extensive simulation results based on two 
typical network topologies show that our proposed 
algorithm can adapt well to traffic variations and 
significantly outperforms the fixed-alternated routing 
algorithm in terms of blocking probability.  

The rest of this paper is organized as follows: In 
Section 2, we briefly present some background about GA 
algorithms and mobile-agents technique. Section 3 
presents our new hybrid algorithm based on the 
combination of mobile agents and GA. Section 4 provides 
the simulation results and discussion. We conclude this 
paper in Section 5. 
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2. Genetic Algorithms and Mobile Agents 
Technique 

In this section, we briefly introduce the main ideas of 
genetic algorithms and mobile agent techniques for 
network routing. In particular, we describe in more detail 
the mobile agents-based algorithm proposed by S.H. Ngo 
et al. [20], which will be adopted in our new hybrid 
algorithm to generate the first population of routes for a 
request 

2.1 Genetic Algorithms 

Genetic Algorithms (GA) [21],[22] are a class of 
probabilistic searching algorithms based on the 
mechanism of biological evolution. A GA begins with an 
initial population of individuals, each of them represents a 
feasible solution to the problem being tackled. Then the 
GA applies a set of genetic operations to the current 
population to generate a better one.  This process is 
repeated until a good solution is found or after predefined 
number of iterations. It is notable that genetic operations 
are critical for a GA and they must be designed 
deliberately to achieve a good performance. Readers are 
referred to [23],[24],[25], and [26] to find some advanced 
results about genetic operations developed by S. 
Kobayashi’s group [27].     

2.2 Mobile Agents Technique for Routing in WDM 
Networks 

Routing in communication networks can be resolved 
efficiently by means of Ant Colony Optimization (ACO) 
[16],[17],[19], in which the routing solution can be built 
using the behavior of ant-based mobile agents in their 
foraging of network states. These collective agents 
indirectly communicate through pheromone trailing 
(stigmergy) in the environment, and an agent can find a 
“good” route in terms of the shortest, least congested path 
from the source to the destination by following the 
pheromone trails of others. Garlick et al. [18] proposed an 
ACO-based algorithm to solve the dynamic RWA problem, 
in which at the arrival of a new connection request a 
number of mobile agents are launched from the source to 
search for the routes to the destination, and the final best 
path for the connection request is determined when all 
mobile agents complete their exploitation tasks. As a new 
set of mobile agents must be launched after the arrival of 
every new connection request, Garlick’s algorithm may 
incur a very large setup delay due to the need to wait for 
all ants to complete their search. To overcome the problem 
associated with Garlick’s algorithm, S.H. Ngo et al. [20] 
proposed a new mobile agents-based algorithm for solving 
the dynamic RWA problem in WDM networks without 

wavelength conversion. By keeping a suitable number of 
ants in a network to cooperatively explore the network 
states and continuously update the pheromone tables, this 
algorithm enables the route for a connection request to be 
determined promptly by the current states of routing tables, 
with a small setup delay. Note, however, that the 
algorithm proposed in [20] usually results in a higher 
blocking probability than that of the GA-based algorithm 
for dynamic RWA in WDM networks without wavelength 
conversion [14],[15]. Since the main idea of the algorithm 
in [20] will be adopted in our hybrid algorithm for 
generating the first population of routes, we describe this 
algorithm here in more detail. 

In Ngo’s algorithm, a network node i with ki 
neighbors is equipped with a probabilistic pheromone 
table Ri  = [ ri

n,d ]ki, N-1 with N-1 rows (N is number of 
network nodes) and ki columns, as illustrated in Fig. 1.  

 
 
 
 
 
 
 
 
 
 
 
 
In the pheromone table, each row corresponds to a 

destination node and each column corresponds to a 
neighbor node; the value ri

n,d  is used as the selection 
probability of neighbor node n when an ant is moving 
toward its destination node d. 

Ants are launched from each node with a given 
probability ρ to a randomly selected destination every T 
time units; here ρ and T are design parameters. Each ant is 
considered to be a mobile agent: it collects information on 
its trip, performs pheromone table updating on visited 
nodes, and continues to move forward as illustrated in Fig. 
2. 
 
 
 
 
 
 
 
 

Whenever an ant visits a node, it updates the 
pheromone table element with the information gathered 
during its trip. Suppose an ant moves from source s to 
destination d following the path (s,…, i-1, i,…,d). When 
the ant arrives at node i, it updates the entry corresponding 

s i-1 i d 

Ant 
launched 

Update 
pheromone 

Ant killed

 
Fig. 2.  Ant’s moving and updating tasks 

0

2 4 

1 3 

5

 
Destination 1 4 5 

0 r3
1,0 = 0.6 r3

4,0 = 0.3 r3
5,0 = 0.1 

1 r3
1,1 = 0.8 r3

4,1 = 0.2 r3
5,1 = 0.0 

… … … … 
5 r3

1,5 = 0.0 r3
4,5 = 0.2 r3

5,5 = 0.8 
   

Fig. 1.  A simple network and its pheromone table of node 3. 
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to the node s as follows: the probability of neighbor i-1 is 
increased while the probabilities of other neighbors are 
decreased. The pseudo-code of the main steps in this 
algorithm can be summarized as follows: 
{Ant generation} 
Do 
 For each node in network 

Select a random destination; 
Launch ants to this destination with a probability ρ 

 End for 
 Increase time by a time-step for ants’ generation  
Until (end of simulation) 

{Ant foraging} 
For each ant from source s to destination d do (in parallel) 

While current node i <> d  
 Update pheromone table elements 
 Push trip’s state into stack 
 If  (found at next hop) 
 Move to next hop  
 Else  
 Kill ant 

End if   
 End while 
End for 

When a new connection request arrives at its source 
node, its route is determined promptly from the routing 
tables: starting from the source node, the next hop will 
always be the neighbor that has the highest selecting 
probability, and this principle is applied until the 
destination node. With this method, the route is already 
determined upon the arrival of a connection request, so 
Ngo’s algorithm is an attractive tool in GA-based dynamic 
RWA algorithms for generating the first population of 
routes, which is usually based on the idea of very time 
consuming random searching [14] 

3. Dynamic RWA by Combining GA and 
Mobile Agents 

Note that the blocking probability of GA-based algorithms 
for dynamic RWA is usually significantly lower than that 
of mobile agents-based algorithms [14],[15],[20]. 
However, GA-based algorithms may incur a very large 
setup delay because they require a very time consuming 
random searching process to generate the first population 
of routes after the arrival of a new request. On the other 
hand, in the mobile agents-based algorithm [20], the routes 
can be promptly determined upon the arrival of a 
connection request, so a small setup delay is guaranteed. 
Based on the above observations, we are motivated to 
propose a hybrid algorithm based on the combination of 
mobile agents and genetic algorithms for dynamic RWA 
in WDM networks with sparse wavelength conversion. 

3.1. Hybrid Algorithm for Dynamic RWA 

Our hybrid algorithm differs from the algorithm proposed 
by Bisbal [14] in that we have adopted a more general 
fitness function and also a new reproduction scheme to 
account for the effects of wavelength conversion 
capability on route selection, such that the GA-based 
approach can be used to solve the dynamic RWA problem 
in WDM networks with sparse wavelength conversion. 
Also, the gain of wavelength conversion can be fully 
explored to improve the blocking behavior of the new 
algorithm. The hybrid algorithm is executed at the arrival 
of a connection request between a source-destination node 
pair. It works with an initial population in which each 
individual is a possible route between the source-
destination node pair. In this work, we use representation, 
crossover and mutation operators similar to those in [14]. 
The coding of a route is a vector of integers where each 
number identifies a node of the route. For the network in 
Fig.3, the coding of the two routes from node 0 to node 5 
are vector (0, 1, 2, 5) and (0, 2, 4, 5).  
 
 
 
 
 
 
 
 
 
 
 
The main steps of the hybrid algorithm are as follows: 
(1) Initialization 
Available schemes for generating the first population of 
routes are usually based on random searching [14], which 
is very time consuming for large networks and may incur a 
large setup delay. Here we propose a new approach to 
generating the first population of routes based on the 
mobile agents-based algorithm proposed by S.H.Ngo et al. 
[20].   

Since the algorithm in [20] was designed to find only 
one suitable route between a source-destination node pair, 
we need to modify it such that it can be used to generate 
the first population of P routes (where P is a design 
parameter) for the hybrid algorithm.  

To make sure that the first population of P routes is 
available for a node-pair upon the arrival of a request 
between this node-pair, we equip each node with a new P-
route routing table in addition to the previous pheromone 
table. The P-route routing table contains N-1 entries, each 
of which corresponds to a list of P routes to a destination 
node; these P routes will serve as the first population for 
the future request between the current node and the 

0 1 

3

4 5 

2

Fig. 3. Two routes from node 0 to node 5 are encoded as 
(0 1 2 5) and (0 2 4 5). 
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destination node. The role of mobile agents is now two-
fold, they need to continuously update both the pheromone 
table and the P-route routing table on each node.  

When an agent moves from its source to its 
destination, it updates the pheromone tables of 
intermediate nodes in a same way as with Ngo’s approach, 
but it updates the P-route routing table of its destination 
node as follows1: when the agent reaches its destination 
node, it updates the list of P routes corresponding to its 
source node based on the new route it has just found. If 
the P-route table contains less than P routes in the route 
list corresponding to its source node, the new route is 
directly inserted into that list. Otherwise, if the list has 
already contained P routes, the new one will replace an 
old route in the list based on the First-In-First-Out policy. 
This replacement is necessary to ensure randomness in the 
first population of routes. The pseudo code of this process 
can be described as follows:  
{Updating the P-route routing table of destination 
node} 
If the new route is different from any available routes in the route list of 
source node Then   

If number of routes in the route list less than P Then 
                   Insert agent’s new route into the list 

Else 
Replace an existing route with the agent’s new  
route based on the First-In-First-Out policy 

End if 
End if 

Since we always keep a suitable number of mobile 
agents in the network, to cooperatively explore the 
network states and to continuously update the pheromone 
tables and P-route routing tables, each P-route routing 
table will contain P routes for each destination after an 
initialization period; those routes are always updated 
based on the current network state and they can serve as 
the first population of P routes upon the arrival of a 
request. 
(2) Determination of Fitness Function 
The definition of the fitness function is critical for a GA, 
because it determines which individual should be chosen 
in the evolution process. Bisbal et al. [14] define the 
fitness function of a route as the inverse of the cost of the 
route, where the cost of the route is defined as the number 
of hops if there exists at least one common free 
wavelength on all the links of the route; otherwise, 
infinite.  

Since this fitness function considers only the number 
of hops in route selection, it tends to take the shortest 
available path for a connection request. Previous work 
[10],[28] indicates clearly that this shortest-path based 

                                                           
1  More efficient but complex updating for P-route routing table is 
possible, such as using the smart agents technique [30]. However, this 
paper focuses mainly on how to combine GA and mobile agents 
technique to solve the dynamic RWA problem, so we just adopt a simple 
updating scheme here.  

approach usually leads to unbalanced link utilization and 
thus significantly degrades network performance.  

To guarantee a good load balance while accounting 
for the gain of using wavelength conversion, we propose 
here a new and more general fitness function for the 
hybrid algorithm. The new fitness function considers not 
only the number of hops on a route, but also the number of 
free wavelengths and the number of wavelength 
converters along the route. For a route having t 
wavelength converters along it, we use the scheme 
proposed in [29] to divide this route into t+1 segments s1, 
s2 ... st+Z as illustrated in Fig. 4. 

 
 
 
 
 
 
 
 
 

For a source-destination node pair, let li be the length 
of route i between the node pair, lmin and lmax be the length 
of the shortest route and the longest route between the 
node pair, respectively, and fwi be the number of free 
wavelengths on route i. If we use fwi

j to denote the number 
of free wavelengths on the jth segment of route i that has ti 
wavelength converters, the fwi can be determined as: 

            ( )j
itji fwfw

i 11
min

+≤≤
=     (1) 

If fwi>0, we introduce the following general fitness 
function fi for route i: 

wci
i

i
i Ct

W
fw

ll
f ⋅−⋅−+

+−
⋅= )1(

1
1

min

αα         (2) 

where α∈[0, 1] is a design parameter, W is total number of 
wavelengths on a link, ti is the number of wavelength 
converters along the route, and Cwc is the cost of each 
wavelength converter. If fwi=0, we just set fi as zero. In 
this case, route i cannot be used by the connection request 
because we cannot find any free lightpath along this route.  

The parameter α should be chosen such that the 
shorter route has a higher fitness value.   
Let d = li - lmin + 1, then α should meet the following 
requirement: 

W
W

dWd
⋅−+

+
⋅>−+⋅ )1(

1
11).1(1 αααα  

which is equivalent to: 

ddWW
ddW

)1)(1(
)1)(1(
+−+

+−
>α      (3) 

For a given value of W, the right-hand side of (3) 
increases as d increases. From the definition of d we can 
see easily that 1≤ d ≤ N-2, where the N is number of 
network nodes.  Thus, we have: 

Last SegmentFirst Segment 

Wavelength converter 

Fig. 4.  A route and its segments 



 
6 

 

  

NNWW
NNW

)1)(1(
)1)(1(
−−+

−−
>α               (4) 

The value of Cwc should be chosen to make sure that 
a route with a larger number of wavelength converters will 
always get a smaller fitness value. For a node pair, 
suppose that one route has l1 hops and t≥1 converters and 
another route has l2 ≤ l1 hops but (t+1) converters, then the 
Cwc should meet the following requirement: 

( ) >⋅−⋅−+
+−
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11
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αα  
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which is equivalent to: 
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⋅> αα           (5) 

Obviously, the right side of inequality (5) reaches its 
maximum value when l2 =lmin and l1 =lmax. The route of 
l2=lmin has to accommodate at least 2 converters (t+1≥2), 
thus its number of hops l2=lmin is not less than 3. On the 
other hand, the route of lmax has t≥1 converter(s), so we 
have lmax < N – Nc +1, where Nc is the total number of 
wavelength converters on the network. Thus, we have  

lmax – lmin  < (N – Nc + 1) –3 = N – Nc – 2 
Finally, we can get the following general inequality for 
Cwc:  

( )
W

W
NN

C
c

wc
11

2
11 −

⋅−+







−−

−⋅> αα    (6) 

 
 
(3) Crossover Operator 
The operator can only be applied to a pair of routes that 
have at least one common node, apart from the source and 
destination nodes. This common node is called the 
crossover point. If there are many common nodes, one of 
them is chosen randomly. The offspring is generated by 
interchanging the second halves of its parent, as illustrated 
in Fig. 5. 

In the crossover stage, the hybrid algorithm examines 
all possible pairs of routes, beginning with the pairs that 
include the individual with a higher fitness value, until 
either all combinations have been considered or the 
population size becomes twice of the original size. 
 
 
 
 
 
 
 
 
 
(4) Mutation Operator 

To do mutation, a node is randomly selected from the 
route and the selected node is called the mutation point 
(node). Then, the path from the mutation node to the 
destination node is randomly selected from the routing 
table of the mutation node. The path from the source node 
to the mutation node remains untouched. In the mutation 
stage, the mutation operator is applied to all individuals 
whose fitness value is below a given threshold, which is 
chosen from the mean fitness value of the current 
generation. 
(5) Reproduction and Stopping Conditions 
After applying the genetic operators above, the 
reproduction stage selects the P fittest individuals that 
have a higher fitness value from both parents and children 
for the next generation. This process is repeated until the 
stopping condition is fulfilled and the best individual is 
selected. Existing results [2] have indicated that to achieve 
a good performance, a route with wavelength conversion 
should be chosen only if no routes without wavelength 
conversion are available for a request. In the reproduction 
stage of Bisbal’s algorithm [14], only the P fittest 
individuals are selected in a generation without 
considering the wavelength conversion capability in the 
selection. To take the advantage of the wavelength 
conversion capability in evolution, while avoiding the 
high cost that may be introduced by adopting too many 
wavelength changes, we propose here a new reproduction 
scheme. In this new scheme, we first select the P fittest 
individuals under the constraint of ‘without wavelength 
conversion’ as the population for next generation, then we 
select the l best routes among all these routes equipped 
with wavelength converter(s) as the backup route 
candidates. These backup route candidates will be 
attempted only if none of these P individuals can be used 
for the connection request under the ‘without wavelength 
conversion’ constraint. Our simulation results in Section 4 
indicate that by keeping only the one best route (l=1) 
among all the routes equipped with wavelength 
converter(s) as the backup route candidate in each 
generation, we can achieve a satisfactory performance in 
terms of blocking probability.  

Let G denote the maximum number of generations 
and S denote the satisfactory cost value of a route between 
a node-pair with its initial value being the cost value of the 
shortest route between the node-pair, then the pseudo code 
of the GA part in our hybrid algorithm can be summarized 
as follows 
{Genetic algorithm} 
t = 0; 
Evaluate fitness values of the first population of P routes; 
Select the best route with wavelength conversion (BR). 
S = shortest distance between (s, d) nodes; 
While ( t < G AND doesn’t exist a route that have length  lower or equal 
S ) do 
 Do crossover & evaluate fitness value for children; 
 Do mutation & evaluate fitness value for children; 

Parents 0  1  2  5 0  2  4  5 

Children 0  1  2  4  5 0  2  5 

Crossover point Crossover point 

Fig. 5.  Example of crossover operation 
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 Select P fittest individuals for next generation; 
 Select the best route with wavelength conversion (BR). 
 S = S + 1; 
 t = t + 1; 
End while 
If  exist routes without wavelength conversion then 

select the best route from P; 
Else 

select the BR;  
End If 

3.2 Complexity Analysis  

Since the time complexity of our hybrid algorithm is 
dominated by its GA part, so our complexity analysis 
focuses on the genetic algorithm. Let N be the number of 
network nodes and Nc be the total number of converters in 
a network, then the complexity of our hybrid algorithm 
can be estimated as follows.  

The complexity of examining all possible pairs in the 
crossover stage is P(P-1)/2 times the complexity of 
examining a pair of routes. This operation includes the 
following steps: search common nodes, create children, 
check if the children are valid routes and check if the 
children are different from their parents. All these steps 
require O(N) time. Moreover, the complexity of evaluating 
the fitness values for the cases with and without 
wavelength conversion is O(PWNNc). Therefore, the 
complexity of the crossover stage is O((P(P-1)/2)N+ 
PWNNc) = O(P2N+PWNNc). In the mutation stage, a 
maximum of P-1 routes are mutated. The fitness values for 
the cases with and without wavelength conversion must be 
evaluated. Thus, the complexity of the mutation stage is 
O(PWNcN). The reproduction stage only involves sorting 
the population by decreasing order of fitness value, so 
complexity of this operation is O(PlogP). In summary, the 
complexity of the hybrid algorithm is: 

O(G(P2N+PW NcN+ PW NcN+PlogP)) 
=O(GPN(P+WNc)). 

3.3 Wavelength Assignment 

 The First-Fit wavelength assignment algorithm [9], in 
which the available wavelength with the smallest index is 
chosen, can achieve almost the same performance as other 
complex algorithms and is very simple to implement, so 
we use this algorithm in our work for wavelength 
assignment. We consider the following two scenarios: 
• If there are no wavelength converters along the 

selected route, apply the First-Fit wavelength 
assignment algorithm directly to the selected route.  

• If there are t≥1 wavelength converters along the 
selected route, we divide the route into t+1 segments as 
illustrated in Fig.4. In the case of full-range 
wavelength conversion, we apply the first-fit algorithm 
for each segment. As for the case of limited-range 

wavelength conversion, we will check all the free 
wavelengths on each segment and try to find a 
lightpath that satisfies the constraint of limited-range 
wavelength conversion and also has the smallest index. 

4. Numerical Results & Discussion 

In this section, we examine the performance of our new 
hybrid algorithm with an extensive simulation study based 
upon the ns-2 network simulator [31] and two typical 
network topologies, as illustrated in Fig. 6. In our 
simulation, we take W=8 and consider the configurations 
of adopting 2 and 5 wavelength converters in each 
network topology. For each converter, we simulate the 
case of full-range wavelength conversion and also the 
cases of using 1 or 2 wavelength conversion units; here a 
node with r conversion units can convert a wavelength w 
into any wavelength belongs to set [w-r, w+r]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To place the wavelength converters properly in a 

network, we use the placement scheme proposed in [29] to 
achieve best benefit from the use of converters. When 
adopting 2 converters, the converters are placed in nodes 3 
and 5 for the NSF network, and nodes 0 and 6 for the 
EON network. When using 5 converters, the converters 
are placed in nodes 1, 3, 5, 10 and 12 for the NFS network, 
and nodes 0, 1, 3, 6 and 8 for the EON network.  

In our experiments, we used a dynamic traffic model 
in which the connection requests arrive at the network 
according to a Poisson process with an arrival rate λ 
(call/seconds). The session holding time is exponentially 
distributed with mean holding time µ (seconds). The 
connection requests are distributed randomly on all the 
network nodes. If there are N sessions over the network, 
then the total workload is measured by N*λ* µ (Erlangs). 
Thus, we can modify N, λ, µ parameters to control 
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Fig. 6 Network topologies adopted in simulation. (a) NSF network
with 14 nodes and 21 links. (b) EON network with 19 nodes and 
35 links.    
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workloads. For performance comparison, we run each 
simulation based on two routing algorithms: the Fixed-
Alternate routing algorithm (FA) with two alternative 
routes and our algorithm.  The GA parameters used in our 
experiment are set as P=16 and G=8 for both the NSF and 
EON networks. For the mobile agents part of our hybrid 
algorithm, we adopt the same set of parameters as that in 
paper [20] for ants generation and pheromone table 
updating. 

4.1 Determination of α and Cwc 

Table 1 and Table 2 illustrate the sensitiveness of our 
hybrid algorithm to the variation of parameters α and Cwc 
for NSF and EON networks. Both tables clearly indicate 
that by choosing the parameter α properly for both the 
cases of with and without wavelength conversion, we can 
reduce the blocking probability considerably. It is 
interesting to note in Table 1 and Table 2 that by choosing 
α =0.9 according to formula (4), we can get the best 
results in terms of blocking probability for both the cases, 
with and without wavelength conversions.  

The results in Tables 1 and 2 also show clearly that 
when wavelength converters are adopted for both the NSF 
and EON networks, we can get the best results in terms of 
blocking probability by first choosing α =0.9 according to 
formula (4) and then choosing Cwc =0.4 according to 
formula (6). Hereafter, we use the values of α =0.9 and 
Cwc =0.4 in our simulation.  

4.2 Effectiveness of Ant-based Initialization and the 
New Fitness Function 

To show clearly the effectiveness of ant-based agent 
scheme for generating the first generation of GA, we 
illustrate in Fig. 7 the blocking probability of the proposed 
algorithm for the cases in which the ant-based scheme and 
the random searching scheme are adopted for generating 
the first generation of GA. 

The comparison in Fig. 7 shows clearly that the ant-
based scheme and the random searching scheme for 
initialization have a very similar performance in terms of 
blocking probability under the proposed algorithm. It 
notable, however, the random searching scheme is usually 
very time consuming and may result in a significantly 
large setup delay than that of ant-based scheme (please 
refer to Table 3 and Table 4).  

To further show the effectiveness of the proposed 
fitness function, we illustrate in Fig. 8 the blocking 
probability of the proposed algorithm under the scenarios 
in which the new fitness function proposed in this paper 
and old fitness function proposed in [14] are adopted.  

 

Table 1. Blocking probability vs. workload for different values of α and 
Cwc on NSF network. F: Full-range conversion. 

GA parameters Workload (Erlangs) 

α Cwc Nc r 45 54 63 72 81 

 0  0.29 0.63 1.39 2.68 4.29
1 0.23 0.53 1.21 2.34 3.76
2 0.22 0.50 1.08 2.22 3.582 

F 0.19 0.42 0.95 2.12 3.43
1 0.23 0.49 1.16 2.22 3.51
2 0.20 0.43 1.04 2.03 3.37

0.4 

5 

F 0.19 0.39 0.95 1.86 3.09
1 0.27 0.60 1.37 2.54 4.19
2 0.24 0.57 1.27 2.55 3.952 

F 0.22 0.52 1.21 2.43 3.86
1 0.26 0.61 1.33 2.57 4.06
2 0.23 0.55 1.23 2.50 3.91

0.9 

0.1 

5 

F 0.22 0.51 1.20 2.40 3.67
 0  0.32 0.84 1.72 3.18 4.87

1 0.28 0.67 1.65 2.76 4.14
2 0.27 0.64 1.46 2.62 4.032 

F 0.22 0.54 1.28 2.14 3.94
1 0.25 0.57 1.39 2.37 4.13
2 0.24 0.55 1.31 2.30 3.82

0.4 

5 

F 0.20 0.44 1.09 2.14 3.38
1 0.30 0.81 1.70 3.13 4.73
2 0.29 0.75 1.67 2.95 4.552 

F 0.27 0.71 1.64 2.86 4.48
1 0.28 0.73 1.67 3.00 4.69
2 0.27 0.69 1.56 2.77 4.42

0.5 

0.1 

5 

F 0.26 0.66 1.48 2.65 4.17
 0  0.30 0.68 1.53 2.86 4.62

1 0.26 0.58 1.36 2.50 3.89
2 0.25 0.55 1.24 2.36 3.752 

F 0.21 0.47 1.12 2.13 3.61
1 0.24 0.53 1.27 2.30 3.74
2 0.22 0.47 1.17 2.12 3.52

0.4 

5 

F 0.19 0.42 1.02 1.95 3.23
1 0.28 0.64 1.50 2.82 4.39
2 0.26 0.62 1.42 2.69 4.192 

F 0.24 0.58 1.37 2.60 4.03
1 0.26 0.67 1.50 2.78 4.33
2 0.25 0.62 1.41 2.63 4.14

0.1 

0.1 

5 

F 0.24 0.57 1.32 2.52 3.99
 
 



 
9 

 

  

Table 2. Blocking probability vs. workload for different values of α and 
Cwc on EON network. F: Full-range conversion. 

Workload (Erlangs) GA parameters 
65 78 91 104 117 

α Cwc Nc r Blocking probability (%) 

 0  0.46 0.72 1.07 1.61 2.39 
1 0.45 0.62 0.90 1.45 2.01 
2 0.44 0.57 0.88 1.35 1.98 2 

F 0.42 0.51 0.84 1.28 1.92 
1 0.44 0.58 0.87 1.34 1.97 
2 0.43 0.49 0.77 1.22 1.81 

0.4 

5 

F 0.41 0.48 0.73 1.08 1.63 
1 0.45 0.65 1.00 1.54 2.31 
2 0.44 0.60 0.96 1.54 2.20 2 

F 0.42 0.53 0.84 1.37 2.04 
1 0.44 0.64 0.94 1.53 2.20 
2 0.43 0.56 0.90 1.47 2.18 

0.9 

0.1 

5 

F 0.41 0.53 0.77 1.36 1.98 
 0  0.51 0.76 1.34 1.91 2.73 

1 0.50 0.71 0.99 1.78 2.56 
2 0.49 0.62 0.97 1.65 2.42 2 

F 0.44 0.55 0.95 1.51 2.18 
1 0.48 0.60 0.93 1.50 2.19 
2 0.46 0.56 0.85 1.40 2.07 

0.4 

5 

F 0.43 0.49 0.77 1.20 1.97 
1 0.51 0.70 1.16 1.85 2.69 
2 0.49 0.73 1.15 1.80 2.59 2 

F 0.46 0.69 1.11 1.78 2.51 
1 0.50 0.68 1.13 1.82 2.66 
2 0.46 0.63 1.08 1.74 2.52 

0.5 

0.1 

5 

F 0.44 0.60 0.98 1.62 2.41 
 0  0.49 0.69 1.22 1.72 2.56 

1 0.47 0.66 0.94 1.57 2.22 
2 0.45 0.59 0.92 1.47 2.13 2 

F 0.43 0.53 0.89 1.38 2.02 
1 0.46 0.60 0.90 1.41 2.06 
2 0.44 0.53 0.81 1.30 1.91 

0.4 

5 

F 0.42 0.48 0.75 1.13 1.75 
1 0.48 0.65 1.08 1.67 2.43 
2 0.46 0.65 1.04 1.62 2.32 2 

F 0.43 0.59 0.94 1.53 2.21 
1 0.47 0.64 1.02 1.64 2.39 
2 0.45 0.61 0.97 1.59 2.31 

0.1 

0.1 

5 

F 0.43 0.57 0.90 1.47 2.14 
 
.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The results in Fig.8 indicate that the blocking 

probability corresponding to the new fitness function is 
significantly lower than that of the old fitness function for 
all the cases we studied.  For the NSF network with two 
wavelength converters and r=2, the blocking probability 
corresponding to the new fitness function is about 0.022 
while the blocking probability corresponding to the old 
fitness function is 0.026 under the workload of 72. For the 
NSF network with a same workload but five wavelength 
converters, the blocking probability is 0.018 and 0.023 for 
the new and old fitness functions, respectively. Similar 
behaviors are also observed in the EON network. For the 
EON network containing two wavelength converters and 
having a workload 104, the blocking probability of the 
new fitness function is 0.013 while the blocking 
probability of the old fitness function is 0.021. For the 
same workload of 104, Fig. 8 (b) shows that the blocking 
probability of the new fitness function is 0.010 while the 
blocking probability of the old fitness function is 0.016 
when the EON network contains five converters. 
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Fig. 7  Performance of the algorithm with Ant-based agents search 
in compare with random search for initial population  (a) NSF 
network. (b) EON network.
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4.3 Overall Performance Comparisons 

To illustrate the overall performance of the our hybrid 
algorithm, we show in Fig. 9 and Fig. 10 the comparisons 
between our hybrid algorithm and the Fixed-Alternate 
(FA) algorithm in terms of blocking probability for the 
cases of adopting two and five converters, respectively.  

The comparisons in Fig. 9 and Fig. 10 show clearly 
that blocking probability with the new algorithm is 
significantly lower than with the Fixed-Alternate routing 
algorithm for all the cases we studied, but the 
improvement from using our algorithm decreases as the 
number of wavelength converters increases. For example, 
for NSF network with two wavelength converters and r=2, 
the blocking probability of FA algorithm is about 0.053 
while that of our algorithm is only 0.022 when the 
workload is 72. For the same set of r and workload in the 
NSF network with five wavelength converters (Fig. 10 (a)), 
the blocking probability is about 0.041 for the FA 
algorithm and is 0.020 for our algorithm. Similar 
behaviors can also be observed in the EON network (Fig. 
9 (b) and Fig. 10 (b)). When the EON network contains 

two wavelength converters, the blocking probability of the 
FA algorithm is about 0.065 when r=2 and the workload is 
104, about three times higher than the blocking probability 
of our algorithm, which is 0.013. For the same values of r 
and workload, Fig. 10 (b) shows that the blocking 
probability of our algorithm is 0.012 when the EON 
network has five converters, and this blocking probability 
is about two times lower than the 0.04 blocking 
probability of the FA algorithm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figs. 9 and 10 also show that for both the FA and our 

algorithms, while we can always decrease blocking 
probability by adopting wavelength converters, this 
decrease is inversely proportional to the number of 
wavelength converters and wavelength conversion 
capability of each converter. Actually, by adopting only 
limited-range wavelength converters, our algorithm can 
achieve performance similar to that of using full-range 
wavelength converters. For example, for the NSF network 
with two converters and a workload of 63, the blocking 
probability of our algorithm is 0.0108 when r=2, and this 
blocking probability is slightly reduced to 0.0095 when we 
adopt full-range wavelength converters. For the EON 
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Fig. 8  Performance of the new fitness function in comparison with
the old fitness function.  (a) NSF network. (b) EON network
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Fig.9 Blocking probability vs. workload with Nc=2, α =0.9 and Cwc

=0.4.  (a) NSF network. (b) EON network. F: Full-range conversion. 
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network with five converters and a workload of 91, the 
blocking probability of our algorithm is 0.0077 when r=2, 
and we can only reduce this blocking probability slightly 
to 0.0073 when we use full-range wavelength converters 
in the network. 

The results in both Fig. 9 and Fig. 10 indicate that our 
new algorithm significantly outperforms the Fixed-
Alternate (FA) in terms of blocking probability. This is 
partially due the reason that the FA algorithm used in our 
comparison has only two alternative routes determined 
statically in advance, so it has very limited adaptability to 
the state variation of a dynamic network. On the other 
hand, each generation of our hybrid algorithm has 16 
feasible alternate routes (P=16) determined dynamically 
based on the current network state, so our algorithm has a 
much better adaptability to the state variation of a dynamic 
network and thus has more chances to find a free route for 
a connection request than that of the FA algorithm. 
Another reason why the proposed algorithm works well in 
the numerical simulation is due to the powerful evolution 
capability of GA combined with the new fitness function, 
such that a good load balance can be achieved by using the 
hybrid algorithm, which in turn further reduces the 
blocking probability as indicated in Fig. 8.  
     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To show that our new algorithm can result in a 
significantly lower setup delay than the old GA-based 
dynamic RWA algorithm [14], we summarize in Table 3 
and Table 4 the average execution time of a request for the 
NSF network and the EON network based on the 
simulation in a computer with Pentium III 600 Mhz 
processor, HDD 10 GB IDE and 512 MB RAM. For 
comparison, we also include in Table 3 and Table 4 the 
average execution time of the FA algorithm. 

 
Table 3. Average execution time in the NSF network (ms).  

Nc: number of wavelength converters 
Algorithm/ 
Workload 45 54 63 72 81 

old GA, Nc=0 9.72 10.08 10.38 11.39 11.77 

old GA, Nc=2 10.91 11.35 11.73 12.48 12.94 

old GA, Nc=5 11.54 11.89 12.32 12.75 13.31 

new GA, Nc=0 4.72 5.06 5.30 5.82 6.00 

new GA, Nc=2 5.46 5.78 6.05 6.84 7.09 

new GA, Nc=5 6.01 6.43 6.56 7.14 7.68 

FA, Nc=0 0.062 0.076 0.092 0.114 0.144 

FA, Nc=2 0.067 0.081 0.098 0.122 0.153 

FA, Nc=5 0.076 0.095 0.111 0.130 0.169 
 

Table 4. Average execution time in the EON network (ms) 
Nc: number of wavelength converters 

Algorithm/ 
Workload 65 78 91 104 117 

old GA, Nc=0 12.70 13.02 13.26 14.43 14.54 

old GA, Nc=2 12.91 13.63 14.08 15.01 15.27 

old GA, Nc=5 13.17 14.02 14.45 15.23 15.54 

new GA, Nc=0 4.57 4.76 4.94 5.13 5.28 

new GA, Nc=2 5.04 5.27 5.62 5.89 6.07 

new GA, Nc=5 5.22 5.51 5.92 6.16 6.38 

FA, Nc=0 0.072 0.086 0.140 0.177 0.206 

FA, Nc=2 0.083 0.099 0.156 0.194 0.221 

FA, Nc=5 0.098 0.120 0.167 0.206 0.240 
 

The results in Table 3 and Table 4 indicate that for both 
the NSF and EON networks, the average execution time of 
our new algorithm is significantly lower than that of the 
old GA-based dynamic RWA algorithm. For the NSF 
network with a workload of 72 Erlangs, the average 
execution time of the old GA algorithm is 11.39 ms, which 
is almost two times higher than the 5.82 ms average 
execution time of the new algorithm. When the EON 
network works under a workload of 78 Erlangs, the 
average execution time of the old GA algorithm is 13.02 
ms, which is almost three times higher than the average 
execution time of the new algorithm (4.76 ms). It is 
notable in above two tables that FA algorithm requires a 
much smaller execution time than that of the conventional 
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Fig.10  Blocking probability vs. workload for Nc=5, α=0.9 and 
Cwc=0.4.  (a) NSF network. (b) EON network. F: Full-range 
conversion. 
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GA algorithm and our hybrid algorithm, because the FA 
algorithm used in our comparison has only two alternative 
routes determined statically in advance and it does not 
involve any evolution process to find a route for a request. 
However, the smaller execution time of FA comes at the 
price of a very limited capability to keep a good load 
balance and thus a significantly higher blocking 
probability than that of the new hybrid algorithm, as 
indicated in Figs. 9 and 10.  

5. Conclusion  

In this paper, we proposed a hybrid algorithm for dynamic 
RWA in optical WDM networks with sparse wavelength 
conversion. By combining the mobile agents technique 
with an appropriate genetic algorithm, we have produced a 
hybrid algorithm that is able to reduce the time consuming 
process of generating the first population of routes while 
retaining the GA’s attractive ability to achieve a 
significantly low blocking probability. To take full 
advantage of wavelength conversion, we also propose a 
new reproduction scheme and a more general fitness 
function that simultaneously takes into account the path 
length, number of free wavelengths, and wavelength 
conversion capability in route evaluation. Extensive 
simulation results show that the new hybrid algorithm can 
achieve a good load balance and always has a lower 
blocking probability than the promising Fixed-Alternate 
routing algorithm for both networks, with full-range 
wavelength conversion and with limited-range conversion.  
Our simulation results also indicate that in a WDM 
network with sparse wavelength conversion, limited-range 
wavelength conversion can actually achieve a performance 
level similar to that of full-range wavelength conversion. 
Note that this paper focuses mainly on how to combine 
GA and mobile agents technique to solve the dynamic 
RWA problem, so we simply adopt some very basic 
genetic operations in our hybrid algorithm. We expect that 
the performance of our hybrid algorithm can be further 
enhanced by adopting some improved genetic operations, 
e.g. the advanced genetic operations (specially the 
crossover operation) developed by S. Kobayashi’s group 
[27]. This remains to be our future research 
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