Evolution of software
composition mechanisms

Carlo Ghezzi

Dipartimento di Elettronica e
Informazione

Politecnico di Milano, Italy
carlo.ghezzi@polimi.i

The concept of binding

m Architecting software requires defining
relationships among elements

= Relationships define the
logical/physical structure

= Binding is the establishment of a
relationship

Binding time and
persistence

= When is the binding established?
— typical distinction between run-time and
"pre" run-time
= How stable is the established binding?
—can it change?
— how does it change?
m explicit
= automatic

Outline

m Historical evolution of composition
mechanisms for software
— From monolithic to highly decentralized
— From static to highly dynamic

= Evolution at “product level” in parallel with
evolution of “process level”

= Challenges
= Some research directions
= Conclusions

More on binding

= Binding occurs at all levels

— programming level
m a variable refers to its type, value, scope...
m a subclass refers to its parent class

component level

= a component refers to other components
through a wuse relationship

the focus here is on binding as a the gluing mechanism among components

Evolution thread

= Continuous evolution to accommodate
increasing degrees of
— dynamicity
— decentralization
to achieve flexibility

= Concurrent evolution at the
process/organizational/business level

Early days:
the “static” scenario (1)

m The closed, static , centralized , fixed
world assumption
— requirements are there
= just elicit them right
— they are stable
= if not, we got them wrong

— changes should be avoided

— static and centralized system compositions,
frozen at design time

— monolithic, systematic, top-down processes

COE Symposium, March 2005

Early days:
the “static” scenario (3)

= Software structure
— From monolithic
= Changes implied recompilation
— To separately compiled parts
m Linked statically and then loaded
= Changes required partial recompilations

— Interface separated from implementation

=» From FORTRAN to Ada

General lessons learned

upfront

L s

uccentralized, complete control and
pre-plan illusory

= When changed, impact whole
product/process

= Requirements cannof be“

Early days:
the “static” scenario (2)

m Response

— The waterfall process model

= Refinement, from clearly and fully specified
requirements down to code

= Top-down development - formal deductive
approaches

— Programming languages and methods
producing static verifiable architectures
m static binding - static type checking

COE Symposium, March 2005

L interface 41

= g |
interface

Initial solutions

Evolutionary process models
— Spiral, prototyping-based
Design for change
— Information hiding
— Careful distinction between

m specification & implementation

= interface & body

= Object oriented design and languages

— Accommodate limited anticipated product
changes

— Towards an open world

COE Symp

OO0 design
Design for change Polymorphism

stable 5\\\\\\\\\\\\\\

volatile

Dynamic binding
f.sendFax()];4

Open world and type Binding may cross
safety network boundaries

= New subclasses (and new objects) defined
as the system is running > methods
invoked may become known at run time

= If changes are anticipated and changes can
be cast in the subclass mechanism, dynamic
evolution and dynamic binding can co-exist

with static checking (and type safety) ol bad

The “components”

Conceptual tools)
scenario

m Distinguish between logical structure m Systems not developed from scratch,
and physical structure but rather out of existing parts
— modularity vs. allocation — Decentralized developments

m The goal of a seamless transition from = Bottom-up integration vs. top-down

centralized to decentralized decomposition
deployment — Component-based development

Gluing software
becoming dominant

m Distinction between components and
connectors

= Wrappers for components

= Middleware provides binding mechanisms

— Middleware as a decoupling layer

= separation of concerns
— separate component logic from intricacies of
communication/cooperation

Mobile scenarios

= With mobility the structure may
evolve dynamically
— physical nodes may appear and
disappear
= Logical mobility also possible (i.e.,
software/agents migrate)

— physical and logical topology may
change dynamically

COE Sy

Dynamicity and decentralization
INn processes and organizations

= From software developed by a single
organization or by a group of
collaborating organizations

= To components developed by
independent organizations with
different degrees of contractual
obligations

Middleware

QuickTime™ and a
TIFF (LZW) decompressor
are needed to see this picture.

Decentralization
dimensions

logical architecture

physical architecture

business and process
model

2005

2

The old world

= Product
— monolithic
— centralized
— static, closed
m Process
— single authority
— pre-planned
— monolithic

Achievements

= Product
— monolithic — modular
— centralized — ——p distributed
— static, closed =————p controlled dynamic binding

m Process
— single authority ——— static task decomposition
— pre-planned e pre-planned evolution
— mMONOIithiC =—p spiral, agile, extreme

Problem scale

m From in-the-tiny
—sensor networks

= huge numbers of autonomous cooperating
devices

= To in-the-large
— web services
u different scales possible

Challenges—2

—m What kind of interface should
components provide in such a
fluid environment?

— Interface should support establishment of
“contracts
= Beyond import/export typed lists
m How to ensure a correct “global”
behavior?
— Need for new theories and models?

A vision: the “global
computing” scenario

= Applications dynamically federated out of
distributed components, even at run time
= Motivations
— the network as a bazaar of components
— mobility, ubiquitous computing
— multimodality

= This pushes dynamicity, decentralization and
distribution to unprecedented levels

m Problems range from technical to business models

Challenges—1

= How to design components?
= How to federate them?

= How to manage composite systems
(without centralized control)?

= How to reason about the “total”
guality of provided services?

= What types of business models?

Service-oriented
architectures

= From now on, | cast my presentation
in the context of service-oriented
architectures

m in particular, web services

Motivation: networked

A definition)
enterprises

|

“Web services are a new breed of Web application. They
are self-contained, self-describing, modular applications Web based interactions
become pervasive, base

that can be published, located, and invoked across the S
Web. Web services perform functions, which can be

anything from simple requests to complicated business The frequency Okexte .
processes. ... interactions and thejr
reach inside the oo
Internal applications

Once a Web service is deployed, other applications (and D (s ot
other Web services) can discover and invoke the deployed o the enterprise.
service.”

Many potential providers

P P be found for each
1BM web service tutorial . Interacting applications
required function. naturally belong to

multiple administrative
domains.

More on “service” (1) More on “service” (2)

—h Component encapsulating a business function of . .
possible value for others = Services lifecycle phases
— Different level granularity — coarse grained — specified
business services vs. fine grained objects — published
] _Se(;vicesdr::tst ;Jtpp;)geeszplicit contracts to allow — discovered
"1 il?o?/\r/]for SL/E)S cht deal not just with functionality - negOtiatEd
m Services can be the basis for service compositions — delivered
— New value is created through integration and — composed
composition — monitored

— New components are recursively created

COE Sympo:

services

_ () N
Types of services . . . P

|

m Atomic services: run to completion without specification .
interaction with service client of functional 6\scovery
= a search service and nonfunctional i -
m Service packages: logically related, not properties b\ndlng
interacting, group of atomic services
= reservation for different theatres
= Workflow services: workflow includes
composition of other services
— state is shared
= buying a book

orchestration

workflow

COE Sympo:

Discovery and binding

|

= Design time
= Deployment time

= Run time .
unstable, evolving

environments

ubiquitous, mobile

. applications
self-organizing

behavior

Dynamic SOAs

= Dynamic discovery and dynamic binding
— the “broker” role

m Self-organizing, self-healing composite
services

m Opportunities
— enjoy use of the “best” available services
— binding can be “context-aware”

Threats: contracts can be
broken

= We bind to a concrete service that
does not satisfy its stated specification

= The bound service evolves
autonomously and breaks the contract

= The service is “temporarily down”

Dynamic SOAs

|

= Composite services are specified by
workflows

=» Workflows contain abstract service
invocations

m Concrete services bound dynamically,
at run time

Service contracts

m Contracts in terms of pre and post
conditions

m Exposed services specify what they
promise to fulfill

= Workflows specify what they expect
from concrete services

= A broker negotiates a contract upon
which a binding is established

COE

Conseqguences

= Traditional good software engineering
methods stress static reasoning on software
architectures

m This has little value in the new world of run
time variability

= Improved techniques are needed to monitor
and react to unexpected deviations at run-
time
— reaction can lead to self-healing systems

COE

profile

authentication [_.] Monltoring

catalog
T = |n an open environment, reacting to
oredit card (e abnormal behaviors is of greater importance
. 'y S than in closed environments
baker'spoo b i . .
panel | ° | [Comtm | m Recovering from problems has to do with
phone] knowing what to do when something goes
: wrong. But before that we have to:
TIFF (Uncgr;J;l;Esrgi;Md:ggn?pressor - DECIde What ShOUId nOt go Wrong
— Detect if and when that happens

are needed to see this picture.

This is where monitoring comes in!

Imposium, March 2005 3 COE Symposium, March 2005

An assertion-based

approach

. . —-i_Contracts expressed in
= Defensive programming terms of pre- and
— Workflow handles timeouts and post-conditions

. . . These assertions are
exceptions raised by remote service inserted as comments

= External contract monitoring into our process
definition
— Collect data External monitors
— Process data (services) are used to

. check the assertions
— Notify workflow

Monitoring

We cast our proposal in terms of BPEL processes

2005 46

BPEL 2 BPEL

. What are the advantages?
Transformation

= Limited design overhead

— Comments are easy to add and transformation
to a monitored BPEL process is automatic

= Business logic remains separate from the
monitoring logic

= We stick to BPEL
— No need for a special workflow engine

= Monitor alternatives
— Different implementations, possibly co-existing

Recovery and repair
actions

m Retry
— transient faults
= Rebind
— find a suitable replacement for previous
service
= Restructure (local reconfiguration)

—find a collection of services that satisfies
request, or merge given collection into one

rch 2005 49

What kind of problems
due we monitor?

= Three different kinds of problems:
— Timeouts

— External exceptions -> these can be
implementation errors in the services or
mismatches between how we call the
service and how the service expects to be
called

— Functional (and/or non functional)
contract enforcement-> this requires an
external monitor service

Conclusions (1)

= We are moving towards unprecedented
degrees of flexibility, dynamicity, and
decentralization at all levels

= New challenges to correctness/
reliability, security, performance

= Crucial to understand how we can build
on previous approaches and where new
ones are needed

Restructure

= Workflow process as a graph

= Graph transformation rules express
possible local changes
— sequential composition
— parallel composition
— branch composition

Monitoring contracts

= An external monitor is needed to
monitor a functional or a non-
functional contract

= We implemented two different
monitors for our assertion-based
approach:
— The first uses C# and .NET framework
— The second uses CLIX and Xlinklt

Conclusions (2)

= The global computing scenario
requires more intelligence to be
moved to run time

= Traditional pre-deployment tools must
be moved to run time in a seamless
fashion
— continuous testing
— run-time verification

Our work

= We have seen an initial attempt to use
defensive programming and an
assertion-based approach to
monitoring to make system partially
self-healing

= The advantage of our approach is that
it can coexist with current “standards”
developed for SOAs

COE Symposium, March 2005

Acknowledgments

+- This work is mainly funded by the EU IP SeCSE (3
years project; just started)
= Members of the group
— C. Ghezzi, L. Baresi, E. Di Nitto, S. Guinea and several
graduate students
= More on this

— L. Baresi, C. Ghezzi, S. Guinea, “Smart Monitors for
Composed Services”, Int.l Conf. on Service Oriented
Computing, New York, Nov. 2004.

— L. Baresi, C. Ghezzi, and S. Guinea, “Towards Self-healing
Compositions of Services” Proceedings of PRISE'04, First
Conference on the PRInciples of Software Engineering,
November 2004, Buenos Aires, Argentina.

005

Our work

T

We developed prototypes for assertion-based
monitoring and recovery mechanisms

We are completing a second wave of prototypes that
take into account performance and usability issues
We will address non-functional properties

We will try to achieve a better separation between
business and monitoring logic to support different
monitoring activities for different stakeholders

Definition of more complex exception handling
routines

10

