

EXAMPLANCE Define the erasure event by *E*. Since the probabilities of non-error and erasure events are distinctive, H(Y) = H(Y, E) = H(E) + H(Y | E)Denote that $Pr(X=1)=\pi$, $H(Y) = H((1-\pi)(1-\alpha), (1-\pi)\alpha + \pi\alpha, \pi(1-\alpha)) = H((1-\pi)(1-\alpha), \alpha, \pi(1-\alpha))$ $= H(\alpha) + (1-\alpha)H(\pi)$ Hence, $C = \max_{p(x)} H(Y) - H(\alpha) = \max_{\pi} (1-\alpha)H(\pi) + H(\alpha) - H(\alpha) = 1-\alpha$ with $\pi = 1/2$.

$$P_e^{(n)} = \frac{1}{M} \sum_{i=1}^M \lambda_i$$

School of Information Science AIST Random Coding (2) The code C is known to the both transmitter and receiver. They are assumed to also know the channel transition matrix p(y|x). A message W is chosen equi-probably Therefore, $Pr(W = w) = 2^{-nR}$, $w = 1, 2, \dots, 2^{nR}$ Assume that the *w*-th code word $X^{n}(w)$, corresponding to the *w*-th row of C, is transmitted. A sequence received by the receiver, denoted as M, follows the distribution: $P(y^n | x^n(w)) = \prod_{i=1}^n p\{y_i | x_i(w)\}$ The receiver guesses which of the 2nR sequences is most likely to have been sent by comparing the conditional probabilities of the possible code words, and selects the one satisfying: $\hat{W} = \arg\max_{w} P(y^n | x^n(w))$ If $\hat{W} \neq W$, there is a decoding error. The codebook C is updated at every transmission timing. Therefore, this technique is called random coding.

 $\lambda^{(n)} \approx 2^{-n\{(C-R)\}}$

School of Information Science
Channel Coding Theorem (3)
Proof of (2): The proof is comprised of the following 2 steps: A) $P_{e}^{(n)}=0$ implies $R \leq C$ B) $P_{e}^{(n)} \rightarrow 0$ implies $R \leq C$
Proof of A):
Assume that we use $(2^{nR}, n)$ rate <i>R</i> code. There are code words that are selected equi-probably and sent to the receiver; Assume that the message <i>W</i> is to be sent. Then, the entropy of <i>W</i> is:
$H(W) = nR = H(W Y^{n}) + I(W;Y^{n})$
However, by the assumption that $g(\mathcal{M}) = \mathcal{W}, \mathcal{H}(\mathcal{M} \mathcal{M}) = 0$. Hence,
$H(W) = nR = I(W; Y^{n}) \leq I(X^{n}; Y^{n}) \leq \sum_{(b)=i=1}^{n} I(X; Y) \leq nC$
(a): From the data processing inequality, where Markov chain $W \rightarrow \lambda^{n}(W) \rightarrow Y^{n}$ holds. (b): To be proven in the next slides (Theorem 8.4.1) (c): By definition of Capacity
Hence, for any codes achieving $P_{e}^{(n)}=0$, $R \leq C$.

From the event: $E = \begin{cases} 1, & \text{if } W \neq \hat{W} \\ 0, & \text{if } W = \hat{W} \\ 0, & \text{if } W = \hat{W} \end{cases} \text{ with } \hat{W} = g(Y^n)$ Then, by using the chain rule, $H(E,W|Y^n) = H(W|Y^n) + H(E|W,Y^n) = H(W|E,Y^n) + H(E|Y^n) + H(W|E,Y^n)$ (a): Because *E* is a function of *W* and *Y*. (a): Because *E* is a function of *W* and *Y*. (b): Because *E* is binary-valued. Furthermore, $H(W|E,Y^n) = P(E=0)H(W|Y^n,E=0) + P(E=1)H(W|Y^n,E=1) \leq Pr(\hat{W}=W) \times 0 + Pr(\hat{W}\neq W)\log(|W||-1) \leq P_e^{(n)}nR$ where $P_e^{(n)} = Pr(\hat{W}\neq W)$ Combining all, we have $H(W|Y^n) \leq 1 + P_e^{(n)}nR$ This is Fano's inequality. However, because $X^n(W)$ is a function of *W*, $H(X^n(W)|Y^n) \leq H(W|Y^n)$ Then, we have Fano's inequality for extension: $H(X^n|Y^n) \leq 1 + P_e^{(n)}nR$

School of Information Science Fano's Inequality for Extension (2) Theorem 8.4.1: $I(X^n;Y^n) \le nC$, for any p(x)Proof: $I(X^n;Y^n) = H(Y^n) - H(Y^n | X^n)$ $= H(Y^n) - \sum_{i=1}^n H(Y_i | Y_i, Y_2, \dots, Y_{i-1}, X^n) = H(Y^n) - \sum_{i=1}^n H(Y_i | X_i)$ because the channel is memory-less. However, $H(Y^n) \le \sum_{i=1}^n H(Y_i)$ Therefore, $I(X^n;Y^n) \le \sum_{i=1}^n H(Y_i) - \sum_{i=1}^n H(Y_i | X_i) = \sum_{i=1}^n I(X_i;Y_i) \le nC$ With this result, the proof of A)-of-(2) of the channel coding theorem is completed. AIST

Fano's Inequality for Extension (3)

School of Information Science

Proof of B)

We now know that $H(W) = nR = H(W|Y^n) + I(W;Y^n)$

But we don't assume the fact $g(\mathcal{V}) = \mathcal{W}$ is known, in this case. Hence, $H(\mathcal{W} | \mathcal{V}) > 0$.

$$nR = H(W|Y^{n}) + I(W;Y^{n}) \le H(W|Y^{n}) + I(X^{n}(W);Y^{n})$$

$$\leq 1 + P_e^{(n)} nR + I(X^n(W); Y^n) \leq 1 + P_e^{(n)} nR + nC$$

where we have used Fano's inequality for extension. Dividing the both sides by n_r

$$R \leq \underbrace{P_e^{(n)}R}_{\substack{\to 0 \\ bv \text{ assumption}}} + \frac{1}{n} + C$$

Finally, we know that $R \leq C$ has to be satisfied.

We also know that
$$P_e^{(n)} \ge 1 - \frac{C}{R} - \frac{1}{nR}$$

