

 $\lambda^{(n)} \approx 2^{-n\{(C-R)\}}$

School of Information Science JAIST **Fano's Inequality for Extension (1)** Proof of B) requires Fano's Inequality for Extension. Let's define the event: $E = \begin{cases} 1, & \text{if} \quad W \neq \hat{W} \\ 0, & \text{if} \quad W = \hat{W} \end{cases} \quad with \quad \hat{W} = g(Y^n)$ \int $=\begin{cases} 1, & \text{if} \quad W \neq \end{cases}$ $E = \begin{cases} 1, & \text{if} \quad W \neq W, \\ 0, & \text{with} \quad W = 0. \end{cases}$ ⎨ *if* $W = \hat{W}$ = \lfloor $H(E, W | Y^n) = H(W | Y^n) + H(E | W, Y^n)$ Then, by using the chain rule, $H(E, W|Y^n) = H(W|Y^n) + \underbrace{H(E|W, Y^n)}_{=0 \quad (a)}$ $= H(W|Yⁿ) +$ = *a* $= H(E|Y^n) + H(W|E, Y^n)$ *n* $(E|Y^n) + H(W|E, Y^n)$ (a): Because *E* is a function of *W* and *Y*ⁿ. $\frac{1}{H(E) \leq 1}$ (b): Because *E* is binary valued (b): Because E is binary-valued. $H(E) \leq 1$ *(b)* $(E) \leq 1$ (*b*) F urthermore, $H(W|E, Y^n) = P(E=0)H(W|Y^n, E=0) + P(E=1)H(W|Y^n, E=1)$ $\leq \Pr(\hat{W} = W) \times 0 + \Pr(\hat{W} \neq W) \log(|W| - 1) \leq P_e^{(n)} nR$ where $P_e^{(n)} = Pr(\hat{W} \neq W)$ Combining all, we have $H(W|Y^n) \leq 1 + P_e^{(n)} nR$ This is Fano's inequality. However, because $X^n(W)$ is a function of W , $H(X^n(W) | Y^n) \le H(W | Y^n)$ Then, we have Fano's inequality for extension: $H(X^n|Y^n) \leq 1 + P_e^{(n)}nR$

JAIST

Fano's Inequality for Extension (3)

School of Information Science

Proof of B)

We now know that $H(W) = nR = H(W|Y^n) + I(W;Y^n)$

But we don't assume the fact $g(Y) = W$ is known, in this case. Hence, $H(W|Y) > 0$.

$$
nR = H(W|Y^n) + I(W;Y^n) \le H(W|Y^n) + I(X^n(W);Y^n)
$$

$$
\leq 1 + P_e^{(n)} nR + I(X^n(W); Y^n) \leq 1 + P_e^{(n)} nR + nC
$$

where we have used Fano's inequality for extension. Dividing the both sides by n ,

$$
R \leq \underbrace{P_e^{(n)}R}_{\to 0} + \underbrace{1}_{\stackrel{n\to\infty}{n\to\infty}} + C
$$

$$
\underbrace{n}_{\to 0}
$$

Finally, we know that $R \leq C$ has to be satisfied.

We also know that
$$
P_e^{(n)} \ge 1 - \frac{C}{R} - \frac{1}{nR}
$$

