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In the last Chapters, we learned ….. 

How to effectively encode the source with the knowledge of 
source appearance probability.

What the theoretical asymptotic properties of the source 
encoding techniques are with the knowledge of the probability.
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In this Chapters, we learn …..

The transmitter and receivers are ignored (Channel output is directly connected
to the channel decoder).
The both channel encoder output and noise take form of binary or
non-binary finite alphabet.

We skip the transmitter and receiver!!!!

+

Binary/Non-binary finite alphabet Noise = Error source

Channel 
Encoder

Channel 
Decoder

Note: Those assumptions are to be eliminated in the next Chapter.

Communication systems “use” channel as medium for information transfer.

- Then, question arises that what is the maximum capability of the channel.
- How can the communication systems use the channel’s capability.
- What are theoretical asymptotic properties of the channel coding techniques

for error protection, given the knowledge of the channel characteristics.

Assumptions:
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Outline
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2. Random Coding
3. Channel Coding Theorem

- Proof for Sufficiency
4. Fano’s Inequality for Extension

- Proof for Necessity
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Channel Model: Review

Finite Alphabet: X={x1, x2, x3, …., xq}, where q is the alphabet size.

Channel input sequence: X0, X1,…., Xi,…, 

Let the conditional joint probability of Y0 =y0, Y1 =y1,…, Yn-1 =yn-1, conditioned upon
X0 =x0, X1 =x1,…, Xn-1 =xn-1 be denoted as

( )110110,...,,,...,, ,...,,,...,,
110110 −−−− nnXXXYYY xxxyyyP

nn

+

Binary/Non-binary finite alphabet Noise = Error source

Channel 
Encoder

Channel 
Decoder

X∈iX Y∈iY

Channel output sequence: Y0, Y1,…., Yi,…, 

Finite Alphabet: Y={y1, y2, y3, …., yr}, where r is the alphabet size.

X∈iX

Y∈iY
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Definition 8.1.0:  Channel Matrix

The channel matrix T={tij} is given as a matrix of which entry is defined as 
the probability that the transmitted symbol xi is received as yj, as:
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Channel Capacity (1)

Definition 8.1.1:  Channel Capacity
The information channel capacity C of memory-less channel is defined as:

{ );(max
)(

YXIC
xp

=

where the maximization is taken over all possible input distributions p(x).
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Channel Capacity (2)

Example:  Binary Symmetric Channel
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where the equality holds if the input distribution is uniform.  Therefore,
we can conclude that bits.)(1 qHC −=

Example:  Binary Erasure Channel
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1-α
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Erasure (Rx can not decide)

1- α
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Channel Capacity (3)

)|()(),()( EYHEHEYHYH +==

))1(,),1)(1(())1(,)1(),1)(1(()( απααπαππααπαπ −−−=−+−−−= HHYH

Define the erasure event by E.  
Since the probabilities of non-error and erasure events are distinctive, 

Denote that Pr(X=1)=π, 

Hence, { { αααπαα
π

−=−+−=−= 1)()()()1(max)()(max
)(
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xp
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with π =1/2.
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Channel Capacity (4)

Example:  Noisy Channel with no Overlapping Outputs

This is because the receiver can identify which of X=0 or X=1 was transmitted 
only by looking at the received symbol.  Since the transmitted symbols are binary.
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with Pr(X=1)=Pr(X=0)=1/2.
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Channel Capacity (5)

Exercise:  Noisy Type Writer

A
B
C
D

Y
Z

A
B
C
D

Y
Z

Calculate the capacity of this noisy type writer, assuming 
that all characters A-Z appears with equal probability.
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1/2

1/2
1/2

1/2 1/2

1/2

1/2
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Channel Capacity (6)

Definition 8.1.2:  Symmetric Channel
The channel is called symmetric if the rows of the channel transition matrix are 
permutation of each other, and so are the columns.

Example:
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3.05.02.0
2.03.05.0
5.02.03.0

)|( xyp

A channel having the following transition matrix is symmetric.

This channel has the capacity:

)(log)()()|()();( rr HHYHXYHYHYXI −≤−=−= Y
where r is a row of the channel transition matrix.

The equality holds if the output distribution is uniform.  However, if p(x) is uniform, 
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and hence, p(y) is also uniform.
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Channel Capacity (7)

Property 8.1.1:
(1)  The channel capacity is non negative, i.e., 0≥C because

(2)  because

0);();(max ≥≥= YXIYXIC

Xlog≤C Xlog)(max);(max =≤= XHYXIC

(3)  becauseYlog≤C Ylog)(max);(max =≤= YHYXIC

(4)  is a continuous and concave function of p(x).  (See Theorem 4.3.4) );( YXI
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Channel Capacity (8)

Burst Error Channel:

Error 
Source

+Input Output

ErrorsE
X Y=X⊕E

Since there is no chance that we change 
the appearance probability of the alphabet 
from thesource X, capacity is: C=1-H(E), 
where H(E)=H{p:Prob(E=1)=p}
with H(x)=-xlog2x-(1-x)log2(1-x).

Memory Channel

S0 S1

1/0.1 1/0.8

0/0.2

0/0.9

Stationary State Probabilities: p0 and p1
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with

p0=2/3 and p1=1/3

H(E)=(2/3)×H(0.1) +(1/3)×H(0.8)
= (2/3)×0.4690+(1/3)×0.7219
=0.5532

Entropy of the Error Source:

Capacity: C=1-H(E)=1-0.5532=0.4467 (bits/symbol)
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Channel Capacity (9)

Memory-less Channel

Bit Error Rate: Pb=0.1×p0+0.8×p1=1/3

(Pb=1/3)

Capacity: C=1-H(E)=1-H(1/3)=0.0817 (bits/symbol)

Capacity with Memory Channel >>> Capacity with Memory-less Channel

Fading channel without Interleaving: Memory Channel

Interleaved channels: Memory-less Channel
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Channel Coding Theorem: Preparation  (1)

Definition 8.2.1: Communication System

Assume that a message W to be transmitted over the channel is drawn from the 
index set {1,2, …, M}, i.e., each message is indexed by a number from this set.  
The following summarizes how the communication system we analyze works:

The communication system that follows the rule described above is denoted as: 

WW ≠ˆ
)(ˆ nYgW =

(1) The message W is then encoded into a length n block of symbols, (x1, x2, … , xn).
The encoded message is denoted as Xn(W).

(2) The transmitted message Xn(W)=(x1, x2, … , xn) suffers from noise in the channel, 
and received as a random sequence Yn=(y1, y2, … , yn) by the receiver. 

(3) The channel has its transition matrix as described by a conditional probability
p(yn|xn)=p(y1, y2, … , yn|x1, x2, … , xn).

(4) The receiver aims to retrieve the transmitted message by an estimation rule g(.),
where     . 

(5) The receiver makes an error, if            . 

( )nnnn YxypX ,)(,
Obviously, according to this definition, the channel is the n-th extension of the 
memory-less channel . ( )YxypX ,)(,
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Channel Coding Theorem: Preparation  (2)

Definition 8.2.2: Memory-less Channel

nkxypyxyp kk
kk

k ,,2,1,)(),( 1 L==−

The channel according to Definition 8.2.1 is memory-less, if

The transition function for the memory-less channel reduces to:
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Definition 8.2.3: Channel Code
An (M, n) code is defined for the channel , where M is the number of
the messages to be transmitted, and n is the length of the encoded sequence.  The
Roles of the encoder and decoder are defined as follows: 

( )YxypX ,)(,

(1) Encoder maps the M messages to their corresponding sequences, 
Xn(1), Xn(2), …., Xn(M).  The set of the code words is called code book.

(2) The decoder function g(.) maps the received sequence of random variable
on to the most likely message estimate .{ }MYg n ,,2,1)( L∈
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Channel Coding Theorem: Preparation  (3)

Definition 8.2.3: Probability of Error

{ } ( ) ))(()()()(Pr iygIixypiXXiYg n
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The conditional probability λi, given the message indexed by i has been transmitted, 
is given by:

where I(.) is the indicator function, which takes value 1 if the argument is satisfied,
and otherwise it takes value 0.

Definition 8.2.4: Maximal Probability of Error
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The maximal error probability λ(n) for an (M, n) code is defined as: 

Definition 8.2.5: Average Probability of Error
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The average error probability Pe
(n) for an (M, n) code is defined as: 
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Definition 8.2.6: Code Rate
The rate R of an (M, n) code is defined as:

Property 8.2.1: Average Probability of Error

if the message transmitted is chosen uniformly from the set.( ))(Pr)( nn
e YgiP ≠=

)()( nn
eP λ≤

The following properties hold:

(1)

(2)

n
MR log

=

Channel Coding Theorem: Preparation  (4)
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Random Coding (1)

Consider (2nR, n) code.  Generate a code at random, according to the probability
distribution p(x) of the symbols x.  Since there are 2nR code words randomly 
selected from the codebook C, which is denoted as:  
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where the argument of (.) indicates the code word index, and the subscript 
indicates the symbol index.  

Since the appearance of the symbols is independent,   
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Since each code word is generated randomly, this codebook C itself is random
variable.  The probability of generating a particular code word is given by:
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Random Coding (2)

Assume that the w-th code word Xn(w), corresponding to the w-th row of C, is 
transmitted.

A sequence received by the receiver, denoted as Yn, follows the distribution:
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The code C is known to the both transmitter and receiver.  They are assumed to
also know the channel transition matrix p(y|x).  A message W is chosen equi-probably.
Therefore, 

))((argˆ wxyPmaxW nn

w
=

nRnR wwW 2,...,2,1,2)Pr( === −

The receiver guesses which of the 2nR sequences is most likely to have been sent
by comparing the conditional probabilities of the possible code words, and selects
the one satisfying:

If , there is a decoding error.WW ≠ˆ

The codebook C is updated at every transmission timing.  Therefore, this technique 
is called random coding.
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Channel Coding Theorem (1)

Theorem 8.3.1: Channel Coding Theorem
(1) There exists a (2nR, n) rate R code such that the maximum error probability λ(n)

can be made arbitrarily small, if the code rate is lower than the capacity R<C.

(2) Conversely, any (2nR, n) rate R code that can achieve arbitrarily small λ(n) must 
satisfy R<C.

Proof of (1):
The proof uses the properties of random coding.  The detailed proof is far beyond
the expected level of this course, and therefore a proof outline is described instead
below:

Before receiver receives yn, it has the only knowledge that there are 2nH(X) “randomly 
selected” sequences to be sent from the transmitter.  Then, receiver receives yn.  
Receiver increases knowledge about the code word xn by receiving the sequence yn.  
However, still there remains uncertainty, which is averaged over all possible code
words.  The averaged uncertainty is expressed by the conditional entropy H(X|Y).
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Channel Coding Theorem (2)
Proof of (1) Continued:

The probability that is selected sequence, selected from among the all possible length-n
Sequences, is a code word of the rate R code, is 2nR/2nH(X), the average probability that 
any code word, other than w, is NOT selected is given by:

This means that there are 2nH(X|Y) candidate sequences, with which received sequence
is most probably yn, and the probability that the other code words are received in the 
form of the sequence yn can be made arbitrarily small, if R<C, as shown below:
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Possible 2nH(X) Sequences

Possible 2nH(X|Y) sequences

2nR Code Words

w Input to the Channel

Output from the Channel

Possible 2nH(Y) Sequences yn
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Channel Coding Theorem (2)
Proof of (1) Continued:

Hence, the average error probability can be made arbitrarily small by making the code 
length n large enough, if R<C.  

The probability that can be made arbitrarily small is averaged error probability, and 
therefore, roughly speaking, the best half of the code words have a maximal error 
probability less than 2-n(C-R), and another half is higher.  Throwing away the code words
having error probability higher than 2-n(C-R), and 2nR-1 code words remains.  This means
that the code rate is changed to: R-1/n, because 2nR-1=2n(R-1/n).  This rate loss is 
negligible if n is large enough.  Then, the maximal error probability satisfies:

{ })()( 2 RCnn −−≈λ

where C=H(X)-H(X|Y) because of the code randomness (maximization with respect 
to p(x) doesn’t have to be taken).

Since the probability described above indicates that the transmitted code word is
decoded correctly, the error probability is given by 

{ })(2))(|)(( RCnnn wxwygP −−≈≠

{ } { })())|()(())(()|( 2121221 RCnRYXHXHnXHRnYXnH −−−−−− −=−=−≈
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Channel Coding Theorem (3)

Proof of (2):
The proof is comprised of the following 2 steps:
A)   Pe

(n)=0 implies 
B) Pe

(n) 0 implies 

Proof of A):
Assume that we use (2nR, n) rate R code.  There are code words that are selected 
equi-probably and sent to the receiver; Assume that the message W is to be sent.
Then, the entropy of W is:

);()()( nn YWIYWHnRWH +==

However, by the assumption that g(Yn)=W,  H(W|Yn)=0.  Hence, 

nCYXIYXIYWInRWH
c

n

ib

nn

a

n

)(1)()(
);();();()( ≤≤≤== ∑

=

(a): From the data processing inequality, where Markov chain W Xn(W) Yn holds.
(b): To be proven in the next slides (Theorem 8.4.1)
(c): By definition of Capacity

Hence, for any codes achieving Pe
(n)=0, . 

CR ≤
CR ≤

CR ≤
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Fano’s Inequality for Extension (1)
Proof of B) requires Fano’s Inequality for Extension.

Let’s define the event: )(ˆ
ˆ,0

ˆ,1 nYgWwith
WWif
WWifE =

⎩
⎨
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=
≠

=

Then, by using the chain rule, 
43421
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43421(a): Because E is a function of W and Yn.

(b): Because E is binary-valued.

Furthermore, )1,()1()0,()0(),( ==+=== EYWHEPEYWHEPYEWH nnn

)1log()ˆPr(0)ˆPr( −≠+×=≤ WWWWW nRP n
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where )ˆPr()( WWP n
e ≠=

Combining all, we have nRPYWH n
e

n )(1)( +≤ This is Fano’s inequality.

However, because Xn(W) is a function of W, )())(( nnn YWHYWXH ≤

Then, we have Fano’s inequality for extension: nRPYXH n
e

nn )(1)( +≤
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Fano’s Inequality for Extension (2)

Theorem 8.4.1: 
Proof:

)(,);( xpanyfornCYXI nn ≤
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because the channel is memory-less.  However, 
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With this result, the proof of A)-of-(2) of the channel coding theorem is completed.
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Fano’s Inequality for Extension (3)

Proof of B)
);()()( nn YWIYWHnRWH +==

But we don’t assume the fact g(Yn)=W is known, in this case.  Hence, H(W|Yn)>0.  

We now know that

));(()();()( nnnnn YWXIYWHYWIYWHnR +≤+=
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where we have used Fano’s inequality for extension.  Dividing the both sides by n,
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Finally, we know that has to be satisfied.CR ≤

We also know that
nRR

CP n
e

11)( −−≥
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Summary

1. Channel Capacity
- Definition
- Some Examples
- Some Properties

2. Random Coding
3. Channel Coding Theorem

- Proof for Sufficiency
4. Fano’s Inequality for Extension

- Proof for Necessity

We have visited…..


