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Abstract—This paper considers that write-once memory
(WOM) codes can be seen as a type of dirty-paper code. The
current state of the memory, which is known to the encoder, plays
the role of the known interference of dirty-paper coding. Erez,
Shamai and Zamir showed that lattice strategies can achieve the
capacity of the known-interference channel. In this paper, lattices
are used to design a WOM code. Encoding is performed modulo
a shaping lattice with respect to a lattice fundamental region
to obtain a codeword, to be added to the current state of the
memory. The fundamental region is designed to accommodate
the limitations of the flash memory system, particularly, that
values can only increase. The criterion for evaluation is average
number of writes. In order to improve the average number of
writes, “coset select” bits are introduced, to maximize the average
number of writes. For an eight-dimensional lattice, numerical
results for practical parameter choices show a promising trend.

I. INTRODUCTION

Multi-level flash memories allow storing one of q multiple
values in each of n cells. These values can easily be increased,
but must be decreased using an expensive erase operation.
Furthermore, erase operations cause the flash memory to
physically deteriorate and eventually fail. Write-once memory
codes, or WOM codes [1], are now being investigated by the
coding theory community in order to mitigate this problem.

Flash memories use error-correcting codes. When a binary
error-correcting code is applied to multi-level flash memory,
typically using Gray coding, the codewords form a sphere
packing [2]. Such sphere packings are not linear. On the
other hand, lattices are linear sphere packings. Clearly, linear
structures have a certain advantages over non-linear ones, and
the error-correcting properties of lattices have been extensively
studied [3, Ch. 3]. Recently, studies of the WOM properties
of lattice-based codes have begun [4], [5], [6]. A lattice-based
WOM code inherits the error-correcting properties of a lattice,
and thus is an appealing structure that both corrects errors and
allows rewriting.

A seemingly different problem, communication in the pres-
ence of known interference, has also received attention because
of the result that interference known to the encoder does not
reduce capacity [7]. Dirty-paper coding provides a method to
reduce the effects of interference, for example, in wireless
communications settings. Erez, Shamai and Zamir showed that
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lattice strategies can achieve this result [8] [9], by computing
signals modulo a shaping lattice.

This paper takes the perspective that lattice WOM coding
is a type of dirty-paper coding problem. The current state of
the memory s, which is known to the encoder, plays the role
of the known interference. Encoding is performed modulo a
shaping lattice with respect to a fundamental region to obtain a
codeword x. In wireless systems, the interference is implicitly
added by the channel, but in flash memory systems, the state
of the memory is explicitly changed to x+ s.

However, WOM codes and wireless communication systems
have different power constraints. Wireless systems have an
average power constraint on x, but x may take on positive
and negative values and there is no constraint on x + s.
In lattice WOM codes, there is a peak power constraint on
x + s, and x must have positive values. The peak power
constraint corresponds to the maximum value V that the flash
cell can store. The positive-value constraint corresponds to
only allowing increases in the cell values.

Accordingly, in this paper, a lattice WOM code is designed
using dirty-paper coding lattice strategies, but the fundamental
region is tuned for the restrictions of the problem. The
proposed lattice WOM code is shaped using a cubic (or
rectangular) fundamental region with only positive values.
The criterion for evaluation is average number of writes. In
order to improve the average number of writes, “coset select”
bits are introduced. This results in a one-to-many mapping
from information bits to codewords. Then, codeword which
maximizes the average number of writes is selected.

In Sec. II, background on lattice codes and fundamental
regions is given. In Sec. III, a simplified description of dirty
paper coding, lattice WOM codes, and the comparisons, are
given. In Sec. IV, the proposed lattice WOM code construction
is given. In Sec. V, numerical results are given. The paper
concludes with discussion in Sec. VI.

II. LATTICES AND LATTICE CODES

A. Lattices and Fundamental Regions

An n-dimensional lattice ⇤ is an infinite additive group,
and it is a subgroup of Rn. A lattice is defined by a generator
matrix G, and is the set of all points:

x = G · b, (1)

where b 2 Z

n, the set of integer vectors.
For a lattice ⇤, a fundamental region ⌦ has the property

that any x 2 Rn can be uniquely written as x = ! + �, with
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! 2 ⌦ and � 2 ⇤. The Voronoi fundamental region V , the set
of points in Rn closer to 0 than any other member of ⇤, is
an important fundamental region.

Consider the operation of modulo ⇤ with respect to a
fundamental region ⌦ [10]. A point x is quantized to � 2 ⇤

with respect to ⌦ as:

Q⌦(x) = �, (2)

if x 2 � + ⌦. Then, the operation modulo ⇤ with respect to
⌦ is given by:

x mod⌦ ⇤ = x�Q⌦(x) (3)

Two fundamental regions of interest are the Voronoi region V ,
and the n-cube BV :

BV = {x 2 Rn|0  xi < V }, (4)

where the side length is V . For a thorough treatment of lattices,
refer to [3].

B. Lattice codes and Their Labeling

To construct a lattice code C, one approach is to use a
fundamental region ⌦ as a shaping region, so that:

C = ⇤ \ ⌦. (5)

Infinite lattices ⇤ are distinguished from finite lattice codes C.
Labeling is assigning information labels, integers or bits,

to the members of C. When ⌦ is the Voronoi fundamental
region V a labeling scheme exists [11]. However, it requires
computationally demanding quantization.

When the fundamental region is a cube ⌦ = BM , efficient
labeling is possible if the following conditions are satisfied. G
is a lower-triangular matrix:

G =

2

666664

g11 0 0 · · · 0

g21 g22 0 · · · 0

g31 g32 g33 · · · 0

...
...

gn1 gn2 gn3 · · · gnn

3

777775
(6)

and normalized such that | det(G)| = 1. The codebook C =

⇤\BM has Mn points. It is required that M/gii is an integer
for all i = 1, . . . , n. b 2 B is a vector of integers with bi 2
{0, 1, . . . , M

gii
� 1}. Generally, G · b is not in C, but:

x = G · b modB M⇤ (7)

is in C. Integers representing
nX

i=1

log2
M

gii
(8)

bits of information can be encoded to the M

n points of C,
expressed as a mapping g:

g : B ! C. (9)

Details of encoding are straightforward, but are omitted, refer
to [12], [4].

Decoding, that is, the mapping C ! B is likewise straight-
forward. If x 2 C, then let b0

= G

�1
x. The encoded integers

then are:

bi = b

0
i mod

M

gii
(10)

for i = 1, 2, . . . , n.

III. DIRTY PAPER CODING AND WOM CODES

A. Background on Dirty Paper Coding
Dirty paper coding is a technique to mitigate the effect of

interference at the receiver [7] [9]. Lattice coding methods can
be used to achieve the well-known result “known interference
does not reduce capacity” on the AWGN channel [8], and a
simplified summary is given here.

A dirty paper codebook Cdpc is constructed using a “shaping
lattice” ⇤s and a fundamental region ⌦ for this lattice, that is,
Cdpc = ⇤ \ ⌦. ⇤s may be a scaled version of ⇤. Suppose
that the transmitter intends that the receiver should decode
x 2 Cdpc, but in the presence of known additive interference
s. That is, if x is transmitted, then x + s is received (recall
channel noise is being ignored). The transmit power constraint
is x 2 Cdpc. The transmitter cannot pre-subtract s because
this may violate the transmit power constraint. Instead, the
transmitter sends:

(x� s) mod⌦ ⇤s, (11)

which does satisfy the power constraint. The received signal
is the above expression plus s. The receiver correctly finds
the intended codeword x by computing the received signal
modV ⇤s:

�
(x� s) modV ⇤s) + s modV ⇤s = x, (12)

where x is the intended codeword.
Because noise has been ignored, this explanation also ig-

nores lattice inflation and random dither needed to achieve
capacity on AWGN channels. However, it captures the essen-
tial idea of dirty paper coding using lattices.

The Voronoi region is often used as the fundamental region,
that is, ⌦ = V . This choice tends to satisfy the average
power constraint P with

P
x

2
i  P , which is common in

communications settings. As the dimension grows large, the
Voronoi region of good lattices tends to resemble a sphere.
In summary, the shaping lattice ⇤s and the corresponding
fundamental region ⌦ should be choose to satisfy the power
constraints of the problem.

B. WOM Encoding and Decoding
In conventional WOM codes, n cells can store one of q

integer values each, that is each cell contains one value of
{0, 1, . . . , q�1}. The lattice-WOM approach generalizes this,
allowing a memory cell to store an arbitrary value between 0
and V , that is V = q � 1. Then, n cells can store one point
of an n-dimensional lattice.

To construct the WOM codebook, use an n-cube with side
length V , BV = [0, V )

n. Then, the entire set of lattice points
in this space is called the WOM codebook Cwom:

Cwom = ⇤ \ BV . (13)
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Fig. 1. Block diagram of lattice WOM encoding.

Conventional WOM codes are defined on Cwom =

{0, 1, . . . , q � 1}n, and this is regarded as a special case of
lattice WOM codes.

The second codebook Clocal is analogous to the dirty paper
codebook, using the cube BM , with M  V :

Clocal = ⇤ \ BM . (14)

A generalized WOM encoding function follows, which is
slightly different from the standard definition. On write i, a
message from B = {0, 1, . . . , 2B � 1} (a B-bit message) is
written to the memory if the current state of the memory is
s 2 Cwom by an encoding function Ei:

Ei : Bi ⇥ Cwom ! Clocal (15)

such that

Ei(b, s) ⌫ 0 (16)

where ⌫ indicates � in all positions. The value written
to memory is s + Ei(b, s). (With conventional definitions,
for example [13], the encoder provides the value written to
memory exactly. The current definition is clearly suited to
the “known interference” channel model. The conventional
decoding function will be identical.)

Now the encoder function E is cast as dirty-paper coding;
the subscript i is dropped in the sequel. Use a shaping lattice
⇤s = M⇤, and a fundamental region BM . Then the encoder
function is:

E(b, s) = (g(b)� s) modBM ⇤s (17)

and then y = E(b, s) + s is stored in memory; g(·) maps
to a codeword using (9). Note that this point y should be an
element of Cwom, or if any coordinate exceeds V then a failure
should be declared.

The decoder function is:

D(y) = y modBM ⇤s (18)

so that:

D(y) = D

⇣�
g(b)� s

�
modBM ⇤s + s

⌘
(19)

= (

�
g(b)� s

�
modBM ⇤s + s) modBM ⇤s (20)

= g(b) modBM ⇤s (21)
= g(b), (22)

and by applying g

�1, the original message b may be found.

In this way, this lattice WOM code can be seen as a kind
of dirty-paper code. The current state of the memory s plays
the role of the known interference. In dirty-paper coding, the
shaping region is a Voronoi region, to satisfy the average
power constraint requirement. In the case of the WOM code,
the shaping region is cubic with only non-negative values, to
satisfy the restriction that cell values can only be increased.

IV. WOM CODE CONSTRUCTION

It is possible to construct a WOM code directly using the
above method. For example, let M =

V
2 . The number of points

in Cwom that decode to the same information appears in Cwom
2

n times. There is a linearity relationship between these points.
Unfortunately, the linearity leads to a difficulty: if one of these
point is bad from the perspective of the average number of
writes, then other points in this set may be bad as well. An
alternative approach is needed.

To overcome this problem, the message b is formed of
information bits u, and non-information “coset select” bits c.
This reduces the amount of information that can be encoded,
while increasing the number of cosets. The encoder will select
the coset which has the codeword that maximizes the number
of future writes. A mapping function � will be introduced
that distributes these points in such a way that this problem is
reduced, and the average number of writes is increased.

Concretely, U bits of information, U = {0, 1, . . . , 2U � 1}
and C “coset select” bits CS = {0, 1, . . . , 2C � 1} are
combined:

� : U ⇥ CS ! B. (23)

An information sequence appears 2

C times in the subcode
encoding. Since |Clocal| = M

n, we have U + C = n log2 M .
Cosets are formed only in the simple sense of a group over
the binary vector,

u1, u2, . . . , uU , c1, c2, . . . , cU , (24)

where the set of 2

U binary vectors with ci = 0 forms
a subgroup of all 2

U+C binary sequences. Cosets of this
subgroup are selected with non-zero ci. In particular, “coset
select” does not refer to cosets of the lattice code.

Various mapping functions � were investigated, and the
following was found to be most effective. Two bit sequences
are u1, u2, . . . , uU and c1, c2, . . . , cC . If U = C, these are
interleaved as c1, u1, c2, u2, . . . , cC , uU ; if U > C, then some
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Fig. 2. Average number of writes for various constructions of the proposed lattice WOM code.

ci bits are replaced by ui bits. Then, a rate-1 recursive convo-
lutional code is used. The input is the interleaved sequence of
U +C bits, and the output is the same number of bits U +C;
the code is not terminated. To form the message b, the first
log2

M
g11

bits from the output of the convolutional code are used
to form b1 (refer to Sec. II-B). The following log2

M
g22

bits are
used to form b2, and so forth. The interleaving and recursive
convolutional code non-uniformly distribute the information
bits throughout the codebook.

For any u and c, the message b can be found as above. From
b, the corresponding memory value is found as y = E(b, s)+

s using (17). Any c 2 C will encode the correct information.
It is desired to find corresponding y that maximizes future
writes.

Previously, it has been argued that choosing y that maxi-
mizes the remaining volume:

||V � y|| =

nY

i=1

(V � yi) (25)

should be selected [4], [5], [6]. Specifically for each ci 2 CS ,
compute the corresponding yi as above. The point which is
written to memory is:

y = argmax

yi

����
V � yi

����
,

where arg max is over i = 1, 2, . . . , 2

C � 1. A block diagram
of the encoder is given in Fig. 1.

The code rate R is:

R =

U

n

bits per dimension, (26)

where U + C = n log2 M and M  V . Choosing V large
and C small will increase the rate while reducing the average
number of rewrites.

Decoding is the straightforward reverse of the encoder.
From y, find the message b using (18). Because the rate-
one convolutional code may be inverted, the function � is
bijective, and �

�1:

�

�1
: B ! U (27)

is easily found.

V. NUMERICAL RESULTS

The E8 lattice is used to evaluate the average number of
writes. This dimension n = 8 lattice has good packing prop-
erties and an efficient decoding algorithm [11]. A generator
matrix suitable for encoding is:

G =

2

66666666664

1/2 0 0 0 0 0 0 0

1/2 1 0 0 0 0 0 0

1/2 �1 1 0 0 0 0 0

1/2 0 �1 1 0 0 0 0

1/2 0 0 �1 1 0 0 0

1/2 0 0 0 �1 1 0 0

1/2 0 0 0 0 �1 1 0

1/2 0 0 0 0 0 �1 2

3

77777777775

.
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The rate-1 convolutional code used for the function � is:

1�D �D

2

1�D

. (28)

The memory is initially in the state s = 0. In one experiment, a
sequence of codewords is repeatedly written to memory, until
a failure is detected. The average number of writes is simply
the number of codewords written to memory, divided by the
number of experiments.

Values of V = 8, 16, 32 were considered; these are analo-
gous to q = 9, 17 and 33 (The WOM lattice construction does
not write V = 8, etc. exactly, but V = 7.5, etc. The lattice
may be scaled to obtain V = 7, but this will have a small
effect the error performance, see [14].) Cases of M = V and
M = V/2 were considered, where the later has higher rate.
For each one, the rate can be adjusted by adjusting the number
of coset select bits C.

The numerical results are shown in Fig. 2. The natural
tradeoff between code rate and the average number of writes
is clearly seen. For the V = 8 case (and similarly for
V = 16, 32), rates in the range of R = 1.5 to 2 can be achieved
using either M = 8 and a large number of coset select bits,
or M = 4 and a small number of coset select bits. Roughly
speaking, these two coding strategies achieve the same average
number of rates. But the complexity increases exponentially
in the number of coset select bits.

Encoding complexity requires lattice encoding and well
as the coset selection stage. Lattice encoding is generally
polynomial complexity, but the coset selection has complexity
exponential 2C in the number of coset select bits C. Efficient
encoding requires searching over all cosets. In Fig. 2, the
complexity is label for various codes, for V = 8. Each time
one coset select bit is added, the complexity doubles.

VI. DISCUSSION

WOM coding can be viewed from the perspective of lattice-
based communication in the presence of known-interference,
also called dirty-paper coding. The similarity is that the state
of the memory plays the role of known interference as in dirty-
paper coding.

Using the lattice-strategy approach for dirty-paper coding
[8], a specific code construction was proposed. But the power
constraint particular to each problem imposes restrictions on
the design of the code. The code is designed using a lattice
fundamental region as a shaping region for the finite code. For
dirty-paper codes, the average power constraint is satisfied by
the Voronoi fundamental region. But for lattice WOM codes,
the positive-only codeword requirement is satisfied by a cubic
shaping region. If we take low-rate cases where M ⌧ V , then
the result “known interference does not reduce capacity” may
be applied to WOM codes, because it allows fairly ignoring
the maximum writing level V , but this parameter choice is
not practical. A specific lattice WOM code was constructed.
Coset select bits were included in order to improve the average
number of writes. The numerical results show a promising
trend.
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